Centre of Studies in Resources Engineering

Ph.D. Topics for Autumn 2022 Semester (Jul. - Dec. 2022) For Enquiries, Contact:

phdadmissions@csre.iitb.ac.in

Faculty Name	Topic	Details	Prerequisites
Prof. Avik	Modelling of forest	Synergies between	Good knowledge of
Bhattacharya	disturbances using	multispectral and radar based-	multi-sensor data
	multi sensor remote	detections will be explored to	handling and
	sensing	map forest disturbances. The	analysis. Scientific
		study will develop models for	programming skills
		the rapid identification of	in Python
		forest disturbances using	Python/MATLAB/R.
		multi-sensor time-series	Working experience
		satellite data. Different	in GIS platform.
		anthropogenic and natural	
		impacts cause disturbances in	
		forests. These disturbances can	
		be of any kind, such as fires,	
		disease, storms, deforestation,	
		etc. Moreover, the work will	
		provide an early warning	
		system for forest fires, which	
		can help sustain the forest	
		ecosystem's sustainable	
		management.	
Prof. Avik	Crop classification and	The study will exploit different	Good knowledge of
Bhattacharya	bio-physical	SAR data for crop	SAR data analysis.
	parameter estimation	classification and biophysical	Scientific
	using SAR data	parameter estimation.	programming skills
			in Python
			Python/MATLAB/R.
			Experience in
			agriculture remote
			sensing is desirable.
Prof. Gulab	Ice sheet modeling		
<u>Singh</u>			
Prof. Gulab	Modeling and		
<u>Singh</u>	forecasting of climate		
	warming-induced		
	glacier deformation		
Prof. Gulab	EM scattering		
<u>Singh</u>	modeling of vegetated		
	and non-vegetated		
	snowpack region and		
	snow mass estimation		

Prof. Alok	Global cratonic	Global satellite-based remote	Good knowelder of
	boundaries:		Good knoweldge of
<u>Porwal</u>		sensing, gravity images and	Geology, Tectonics
	Implications for	DEM data would be used for	and Geophysics.
	mineral exploration	demarcarting cratons and	Knoweldge of
		translithospheric structures	remote sensing and
		world-wide. A global mineral	GIS would be added
		deposit database will be	preferable.
		generated; and geosptial	
		analysis tools would be used to	
		develop insights into the	
		fertility of cratons and identify	
		mineral prognostic areas	
Prof. Alok	Geological feature	Apply unsupervised machine	Preferably a
Porwal	learning and	learning techniques (e.g.,	computer science or
2 02 11 02	unsupervised mineral	SOM) for extracting mineral-	geology graduate
	prospectivity modeling	deposit-related features from	with interest in
	prospectively modeling	geoscience datasets, validate	ML/data mining.
		them against geological	Till dam milling.
		knoweldge, and apply to	
		exploration targeting	
Prof. Alok	Sulfate deposits on	Use orbital V-NIR-SWIR and	Preferably a physical
	-		
<u>Porwal</u>	Mars: Age, origin and	TIR data for mapping sulfate	chemistry, physics or
	implications for	deposits on Mars, work their	geology graduate
	paleoclimate of Mars	ages using drater counting,	with interest in
		develop theories for their	planetary geology.
		origin and understand the	
		implications for Martian	
D 6 6		palaeoclimate	
Prof. Surya	Embedded High	Development of Algorithms,	
<u>Durbha</u>	Performance Multi-	Hardware and Software for	
	Sensor (LiDAR, Multi-	rapid detection and monitoring	
	Spectral, SAR) Data	of affected areas during	
	fusion and Analytics	extreme events.	
<u>Prof. Surya</u>	Geospatial Knowledge	Develop knowledge graphs/	
<u>Durbha</u>	Representation based	Ontologies based knowledge	
	Framework for	representation and reasoning	
	Disasters	framework for Indian Flood	
		disasters	
<u>Prof.</u>	Monitoring Soil	Goal of the project is to	Candidate is
<u>Karthikeyan</u>	Moisture and	develop high quality soil	required to have
<u>Lanka</u>	Vegetation using	moisture and vegetation	good programming
	Passive Microwave	information using passive	knowledge in any of
	Satellite Radiometry	microwave sensors SMAP and	the platforms such as
		SMOS. In this process,	MATLAB/R/Python
		synergies between microwave	etc. Some
		and optical/thermal sensors	background on
		shall be explored.	remote sensing
		_	(ideally microwave
			remote sensing) and
			AI/ML is desirable.
			1 12 1711 IS GOSTIGOTO.

Prof.	Soil moisture-	Soil moisture feedback to	Candidate is
Karthikeyan	precipitation	precipitation is an important	required to have
Lanka	feedbacks in the	driver that determines the land	basic understanding
Lanka	context of extreme	contributions to the total	about land and
	events using satellite	precipitation. Assessment of	atmosphere
	data and regional	land feedbacks is very	processes. Candidate
	climate models	important in the context of	is required to have
	chinate models	agriculture and extreme	good programming
		events. However, it is	knowledge in any of
		challenging to partition these	the platforms such as
		fluxes into atmospheric and	MATLAB/R/Python
		land contributions. The	etc. Experience with
		overarching goal of this	WRF modeling is
		research is to develop	desirable.
		algorithms that synergistically	
		use satellite products and	
		numerical weather prediction	
		models to address science	
		questions pertaining to drought	
		monitoring and prediction and	
		impacts of agriculture on	
		climate.	
<u>Prof.</u>	Developing high	Develop novel algorithms to	Candidate is
Karthikeyan	resolution soil	estimate soil moisture at high	required to have
<u>Lanka</u>	moisture to improve	resolution possibly at sub	good programming
	monitoring of	kilometre scales.	knowledge in any of
	agricultural droughts	Subsequently, the utility of	the platforms such as
		developed datasets shall be	MATLAB/R/Python
		analyzed for drought	etc. Some
		monitoring and other	background on
		agricultural applications.	microwave remote
			sensing and AI/ML
			is desirable.
1	I.	L	