BASICS OF MICROWAVE REMOTE SENSING
The entire range of EM radiation constitute the EM Spectrum

Microwave sensors sense electromagnetic radiations in the microwave region of the EM Spectrum
Radar wavelengths

Dr. A. Bhattacharya
Radar wavelengths

<table>
<thead>
<tr>
<th>Frequency band</th>
<th>Wavelength (cm)</th>
<th>Frequency (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ka</td>
<td>0.8-1.1</td>
<td>40 - 26.5</td>
</tr>
<tr>
<td>K</td>
<td>1.1-1.7</td>
<td>26.5 - 18</td>
</tr>
<tr>
<td>Ku</td>
<td>1.7-2.4</td>
<td>18 - 12.5</td>
</tr>
<tr>
<td>X</td>
<td>2.4-3.8</td>
<td>12.5 - 8</td>
</tr>
<tr>
<td>C</td>
<td>3.8-7.5</td>
<td>8 - 4</td>
</tr>
<tr>
<td>S</td>
<td>7.5-15</td>
<td>4 - 2</td>
</tr>
<tr>
<td>L</td>
<td>15 -30</td>
<td>2 - 1</td>
</tr>
<tr>
<td>P</td>
<td>30 -100</td>
<td>1 - 0.3</td>
</tr>
</tbody>
</table>

\[
f (\text{GHz}) = \frac{C}{\lambda}
\]

C = 3.10^8 m

\[
\lambda = \text{wavelength in m}
\]

Dr. A. Bhattacharya
Radar is an acronym for Radio Detection And Ranging.

A Radar system has three primary functions:
- It transmits microwave (radio) signals towards a scene
- It receives the portion of the transmitted energy backscattered from the scene
- It observes the strength (detection) and the time delay (ranging) of the return signals.

Radar provides its own energy source and, therefore, can operate both day or night and through cloud cover. This type of system is known as an active remote sensing system.
Characteristics of radar remote sensing

- Advantages compared to optical remote sensing

- All weather capability (small sensitivity of clouds, light rain)
- Day and night operation (independence of sun illumination)
- No effects of atmospheric constituents (multitemporal analysis)
- Sensitivity to dielectric properties (water content, biomass, ice)
- Sensitivity to surface roughness (ocean wind speed)
- Accurate measurements of distance (interferometry)
- Sensitivity to man made objects
- Sensitivity to target structure (use of polarimetry)
- Subsurface penetration

Dr. A. Bhattacharya
Characteristics of radar remote sensing

- **Inconvenients**
 - Complex interactions (difficulty in understanding, complex processing)
 - Speckle effects (difficulty in visual interpretation)
 - Topographic effects
 - Effect of surface roughness
All-weather system

- An ‘all-weather’ imaging system
 - A microwaves system: cloud penetrating capabilities

ERS-1 SAR, 11.25 a.m. LANDSAT TM, 9.45 a.m.

Ireland. 09/08/1991
Dr. A. Bhattacharya
Marginal atmospheric effects

Dr. A. Bhattacharya
Effects of cloud and rain on microwave transmission.

Fig. 1.1 Effect of cloud on radio transmission from space to ground.

Dr. A. Bhattacharya
Effect of Rainfall on X-SAR images

Fig. 1. Left: View around Noakhali, Bangladesh (22.8° N x 91.2° E) on 7 October 1994 with no rain present. Right: Same scene on 18 April 1994. Note scattering by frozen hydrometeors in the upper right, scattering and attenuation by rain in middle-lower right, and absorption mainly by rain with little ice in the lower left. The maximum NRCS of the scattered signal is ~ -3 dB and the minimum NRCS value in the shaded area is ~ -30 dB.

Dr. A. Bhattacharya
Why Use Radar for Remote Sensing?

- Controllable source of illumination
 - sees through cloud and rain, and at night
- Images can be high resolution (3 - 10 m)
- Different features are portrayed or discriminated compared to visible sensors
- Some surface features can be seen better in radar images:
 - ice, ocean waves
 - soil moisture, vegetation mass
 - man-made objects, e.g. buildings
 - geological structures

Dr. A. Bhattacharya
Types of Microwave Remote Sensors

- **Microwave radiometers**
 - Measure the emittance of EM energy within the microwave region of the EM spectrum, just like thermal IR sensors

- **Non-imaging RADARs**
 1. Altimeters - measure the elevation of the earth's surface
 2. Scatterometers - detect variations in microwave backscatter from a large area - measure variations in surface roughness, used to estimate ocean wind speed

- **Imaging RADARs**
 - Synthetic Aperture Radars - map variations in microwave backscatter at fine spatial scales (10 to 50 m), used to create an image - measure variations in surface roughness and surface moisture

Dr. A. Bhattacharya
Active Sensor Systems and System Parameters

Parameters

- **SEASAT-1, 2**
- **JERS-1, 2**
- **Radarsat**
- **SIR-C**
- **ENVISAT**
- **Radarsat-2**

Launch Dates
- June 1978
- July 1991
- Apr 1992
- Nov 1995
- Apr & Oct 1994
- March 1, 2002
- Dec 14, 2007

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Wavelength (μm)</th>
<th>Resolution (m)</th>
<th>Swath (km)</th>
<th>Look angle</th>
<th>Polarization</th>
<th>Looks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.275</td>
<td>23.5</td>
<td>25</td>
<td>100</td>
<td>23–35</td>
<td>HH, VV</td>
<td>4</td>
</tr>
<tr>
<td>5.3</td>
<td>5.6</td>
<td>30</td>
<td>100</td>
<td>23–35</td>
<td>HH</td>
<td>4</td>
</tr>
<tr>
<td>1.275</td>
<td>23.5</td>
<td>18</td>
<td>75</td>
<td>20–35</td>
<td>HH, VV, HV</td>
<td>3</td>
</tr>
<tr>
<td>5.3</td>
<td>5.6</td>
<td>10</td>
<td>35–500</td>
<td>20–50</td>
<td>HH, VV, HV</td>
<td>1–4</td>
</tr>
<tr>
<td>2.2</td>
<td>5.6</td>
<td>100</td>
<td>15–90</td>
<td>20–55</td>
<td>HH, VV, HV</td>
<td>3</td>
</tr>
<tr>
<td>5.3</td>
<td>5.6</td>
<td>25</td>
<td>150–1 km</td>
<td>20–50</td>
<td>HH, VV</td>
<td>1</td>
</tr>
<tr>
<td>3.1</td>
<td>9.8</td>
<td>100</td>
<td>35–500</td>
<td>20–50</td>
<td>HH, VV, HV</td>
<td>1–4</td>
</tr>
<tr>
<td>5.3</td>
<td>5.6</td>
<td>25</td>
<td>100–1 km</td>
<td>20–50</td>
<td>HH, VV, HV</td>
<td>1</td>
</tr>
</tbody>
</table>
Various Imaging Modes

Strip Mode
Resolution: 3 m

ScanSAR
Resolution: 16 m

Spotlight
Resolution: 1 m
Microwave measurements

Microwave Transmitter / Receiver

Antenna

Target

Microwave EM energy pulse transmitted by the radar

Microwave EM energy pulse reflected from a target that will be detected by the radar
Microwave measurements

1. Transmitted pulse travels to the target

2. The target reflects the pulse, and the reflected pulse travels back to the microwave antenna/receiver, where it is DETECTED

3. The radar measures the time (t) between when the pulse was transmitted and when the reflected signal reaches the receiver – The time it takes the pulse to travel from the radar to the target and back is used to estimate the RANGE

Dr. A. Bhattacharya
Radar geometry

Dr. A. Bhattacharya

- Flight path
- Nadir track
- Swath
- Altitude
- Look angle
- Azimuth
- Near range
- Ground range
- Slant range
- Foot print
- Far range
Optical versus radar
Side-Looking Radar

Azimuth direction

Range direction

Pulses

Linear displacement of the antenna along the track (aircraft)

The range information comes from the time needed by the pulse to travel way and back.

Dr. A. Bhattacharya
Resolution

- Since SAR is an active system, the actual sensor resolution has two dimensions: range resolution and azimuth resolution. Resolution of a SAR sensor should not be confused with pixel spacing which results from sampling done by the SAR image processor.

 - **Range:**
 - Range resolution of a SAR is determined by built-in radar and processor constraints which act in the slant range domain. Range resolution is dependent on the length of the processed pulse; shorter pulses result in “higher” resolution. Radar data are created in the slant range domain, but usually are projected onto the ground range plane when processed into an image.

 - **Azimuth:**
 - For a real aperture radar, azimuth resolution is determined by the angular beamwidth of the terrain strip illuminated by the radar beam. For two objects to be resolved, they must be separated in the azimuth direction by a distance greater than the beam width on the ground. SAR gets its name from the azimuth processing and can achieve an azimuth resolution which may be hundreds of times smaller than the transmitted antenna beam width.

Dr. A. Bhattacharya
The ability of the radar to distinguish two targets in the range direction.

\[\Delta R = \frac{c}{2} = \frac{PL}{2} \]
Range and Ground Resolutions

\[\Delta R = \frac{c\tau}{2}. \]

\[R_g = \frac{c\tau}{2\cos\theta_d} \]

\[R_g = \frac{c\tau}{2\sin\theta_l} \quad \text{Since } \theta_d = 90 - \theta_l \]
Slant Range to Ground Range Conversion
Geometry of Radar Data collection

Figure 8.4 Nomenclature for the geometry of radar data collection.

Dr. A. Bhattacharya
ERS-1 SAR Pulse length $\tau = 37.12 \mu s$

Range Resolution = $c\tau/2 = 3.0 \times 10^8 \times 37.12 \times 10^{-6}/2 = 5568 m = 5.568 \text{ km}$

How to get high resolution?

Pulse Compression Techniques to improve Range Resolution

After pulse compression techniques the

Range Resolution = $C/(2B) = 3.0 \times 10^8 / (2 \times 15.5 \times 10^6) = 9.677 \text{ meters}$ (Where $B=1/\tau$ is bandwidth)

Ground Range = $C/[2B\sin(23^0)] = 24.76 \text{ m}$

Compressed pulse length = 64 ns = 1/Bandwidth

Sampling frequency (f_s) = 18.96 MHz. So range pixel size = $C/(2*f_s) = 7.9 \text{ m}$

Dr. A. Bhattacharya
High resolution (Range)

- **Pulse Length** = 2 μs to 65 μs
- **Bandwidth** = 150 MHz nominal, 300 MHz high resolution

Range Resolution = \(\frac{C}{2B} = \frac{3.0 \times 10^8}{2 \times 150 \times 10^6} \)

= 1 m (150 MHz)

and 0.5 m (300 MHz)
Azimuth Spatial Resolution

Range Resolution

\[SR = \frac{C \times P}{2} \]

\[R = \frac{C \times P}{2 \sin \theta_i} \]

Azimuth Resolution

\[R_a = R \times \beta \]

\(\beta \)-Azimuth beam width.

Dr. A. Bhattacharya
Azimuth resolution

Elevation (θ_B) and Azimuth (ϕ_B) Beam Widths

FIGURE 6.5 The definition of the angles within the beam of a rectangular antenna. Note that the thinner of the two angular beamwidths, ϕ_B, corresponds to the larger dimension of the antenna.
Azimuth resolution

Elevation (θ_B) and Azimuth (ϕ_B) Beam Widths

Azimuth beam width = 0.288 deg.

Elevation beam width = 5.8 deg.

Figure 6.5 The definition of the angles within the beam of a rectangular antenna. Note that the thinner of the two angular beamwidths, ϕ_B, corresponds to the larger dimension of the antenna.

Dr. A. Bhattacharya
Azimuth resolution

\[R_a = R \cdot \beta \]

\[\beta = \frac{\lambda}{L} \]

\[R_a = R \cdot \frac{\lambda}{L} \]

Where \(L \) is length of antenna (10 m).

\[R = \frac{H}{\cos \theta_l} \]

For \(H = 10 \) km, \(\theta_l = 23^0 \), \(\lambda = 5.66 \) cm

\[R_a = 60 \text{ meters} \]

For \(H = 765 \) km

\[R_a = 4.6978 \text{ km} \]
Airborne or Spaceborne radar could collect data while flying over a large distance and then process the data as if it came from a physically long antenna. The distance the aircraft flies in synthesizing the antenna is known as the synthetic aperture.

Dr. A. Bhattacharya
What is Synthetic Aperture Radar (SAR)?

- A side-looking radar system which makes a high-resolution image of the Earth's surface (for remote sensing applications).

- As an imaging side-looking radar moves along its path, it accumulates data. In this way, continuous strips of the ground surface are “illuminated” parallel and to one side of the flight direction. From this record of signal data, processing is needed to produce radar images.

- The across-track dimension is referred to as “range”. Near range edge is closest to nadir (the points directly below the radar) and far range edge is farthest from the radar.

- The along-track dimension is referred to as “azimuth”.

- In a radar system, resolution is defined for both the range and azimuth directions.

- Digital signal processing is used to focus the image and obtain a higher resolution than achieved by conventional radar.

Dr. A. Bhattacharya
What is a SAR image?

The image represents physical processes.

Pixels are measurements.

Image is interpretable based on understanding of the physical processes.

Dr. A. Bhattacharya
A major advance in radar remote sensing has been the improvement in azimuth resolution through the development of synthetic aperture radar (SAR) systems.

- In a real aperture radar system that the azimuthal resolution inversely proportional to antenna length (L)
- Great improvement in azimuth resolution could be realized if a longer antenna were used.
- Engineers now synthesize a very long antenna electronically. The major difference is that a greater number of additional beams are sent toward the object.
- Large advantage: SAR technology allows high spatial resolution imaging

Dr. A. Bhattacharya
A longer antenna is “synthesized” electronically by using the same antenna but moving it. Recall that the azimuth resolution gets better with longer antennas in SLAR systems.

Dr. A. Bhattacharya
The Doppler principle states that the frequency (pitch) of a sound changes if the listener and/or source are in motion relative to one another.

• A doppler radar is a radar using the doppler effect of the returned echoes from targets to measure their radial velocity.

• The microwave signal sent by the radar antenna’s directional beam is reflected toward the radar and compared in frequency, up or down from the original signal, measuring the target velocity component in the direction of the beam.

• An approaching train whistle will have an increasingly higher frequency pitch as it approaches. This pitch will be highest when it is directly perpendicular to the listener (receiver). This is called the point of zero Doppler. As the train passes by, its pitch will decrease in frequency in proportion to the distance it is from the listener (receiver).

• This principle is applicable to all harmonic wave motion, including the microwaves used in radar systems.

Dr. A. Bhattacharya
Synthetic Aperture Radar (SAR) Systems

If we include the ability to detect wavelengths, we can see the Doppler shift (lower frequency behind the sensor, higher ahead).
Antenna scattering

Resolution ($r=\theta \cdot R$)

Wavelength

Antenna length (horizontal direction)

Angular aperture (horizontal plane)

The larger the antenna, the narrower the aperture (finer resolution)

$$\theta = \frac{\lambda}{L}$$

$$R_a = \frac{\lambda \cdot R}{L}$$

Numerical example:

$L \approx 10m$, $R \approx 1000$ km (spaceborne radar), $\lambda \approx 5$ cm (C band) \Rightarrow resolution ≈ 5 km

Dr. A. Bhattacharya
Improvement in Azimuth Resolution

Length of the Synthetic Aperture $L_{SA} = R \theta_A = R \frac{\lambda}{L_a}$

Dwell or integration time $s = \frac{L_{SA}}{V_{st}} = \frac{R\lambda}{VL_a} = 0.622$ sec

Number of pulses $= PRF*S = 1679*0.622 = 1045$ pulses

Real SAR Antenna aperture azimuth beamwidth (θ_A)

Along track antenna real length $= L_a$

Through diffraction theory $\theta_a = \frac{\lambda}{L_a}$

Azimuth Resolution with Synthetic Aperture

$\delta_{AT} = \frac{R}{2} \frac{\lambda}{L_{SA}} = \frac{R\lambda}{2\frac{R\lambda}{L_a}} = \frac{L_a}{2}$

Dr. A. Bhattacharya L_a
Improvement in Azimuth Resolution

\[L_{SA} = R \theta_A = R \frac{\lambda}{L_a} \]

\[\delta_{AT} = \frac{\lambda}{L_{SA}} \left(\frac{R}{2} \right) = \frac{\lambda R}{2} \frac{R \lambda}{L_a} = \frac{L_a}{2} \]

ERS-1 SAR antenna length \(L_a = 10 \) m

So, Azimuth Resolution = \(10/2 = 5 \) m

Azimuth Resolution is independent of distance between object and sensor.

The lesser the antenna size, the better the resolution.

One cannot reduce the antenna size below the limit because the sensitivity of the radar diminishes due to low directivity.

Dr. A. Bhattacharya
Geometric distortions

- Geometric distortion caused by the side looking geometry of radar
 - Foreshortening
 - Layover
 - Shadow
Foreshortening

- distance A-B on the slope is shortened to A'-B' in the SAR image
- bright pixel values
- distance A-B on the slope is shortened to A'-B' in the SAR image
- extreme case of foreshortening
- top of the mountain is closer to the sensor than the bottom
- bright pixel values
- distance B-C on the slope does not appear in the SAR image
- top of the mountain high enough so that backslope is completely in the shadow
- dark pixel values
Distortions: Foreshortening

JERS-1 Credits: JAXA

Radarsat-1 Credits: CSA

Dr. A. Bhattacharya
Distortions: Layover

Dr. A. Bhattacharya
Distortions: Shadow

Ascending

Descending

Dr. A. Bhattacharya
The Radar Equation

\[P_R = \frac{P_T G \sigma A}{(4\pi)^2 R^4} \]
Radar cross section

\[\sigma \] - is the radar surface backscatter coefficient

- It represents the fraction of incoming EM radiation that is scattered from the surface in the direction of the transmitted energy (hence the term “backscatter”)
- It is equivalent to the reflection coefficient in the visible/IR region of the EM spectrum

\[\sigma^0 = f(\text{Roughness, Moisture, Geometry, Look angle, Polarization}) \]

- Factors controlling variations in \(\sigma \)
 - Surface roughness
 - Surface dielectric constant

Dr. A. Bhattacharya
Specular Reflection or Scattering

- Occurs from very smooth surfaces, where the height of features on the surface << wavelength of the incoming EM radiation
Diffuse Reflectors or Scatterers

- Most surfaces are not smooth, and reflect incoming EM radiation in a variety of directions
- These are called diffuse reflectors or scatterers
Surface scattering

Radar backscattering is dependent on the relative height or roughness of the surface.

- **Smooth**: no return

 - $\ll \lambda$

- **Slightly Rough**: slightly diffuse

 - $\ll \lambda$

- **Moderately Rough**: moderately diffuse

 - $\ll \lambda$

- **Very Rough**: very diffuse

 - $\gg \lambda$

Figures from
Scattering dependency on wavelength

Microwave scattering as a function of surface roughness is wavelength dependent
Radar wavelengths

- X-band
- C-band
- L-band
Scattering dependency on wavelength

Variation in MW backscatter from a rough surface (grass field) as a function of wavelength – As the wavelength gets longer, the backscattering coefficient drops
Scattering dependency on incidence angle

Microwave scattering is dependent on incidence angle

As incidence angle increases, backscattering decreases

Figure from http://pds.jpl.nasa.gov/mgdff/chap5/f5-4f.gif
Scattering dependency on incidence angle and wavelength

Expected surface roughness back-scatter from terrain illuminated with 3 cm wavelength microwave energy with a depression angle of 45°.
Surface scattering

The roughness of the surface (wrt to the wavelength) governs the scattering pattern.

\[\varepsilon_{r2} > \varepsilon_{r1} \] medium 2 is wetter than medium 1

The dielectric constant (moisture content) of the medium governs the strength of the backscatter.
...what does a radar return look like?

<table>
<thead>
<tr>
<th>image signature</th>
<th>tone</th>
<th>terrain feature</th>
<th>cause of signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>highlights</td>
<td>bright</td>
<td>steep slopes, scarps facing antenna</td>
<td>much energy reflected back</td>
</tr>
<tr>
<td>shadows</td>
<td>very dark</td>
<td>steep slopes facing away</td>
<td>no energy reaches terrain; no return</td>
</tr>
<tr>
<td>diffuse surfaces</td>
<td>medium vegetation</td>
<td>scatter in many directions (surface or volume scattering)</td>
<td></td>
</tr>
</tbody>
</table>
...what does a radar return look like?

<table>
<thead>
<tr>
<th>Image signature</th>
<th>Tone</th>
<th>Terrain feature</th>
<th>Cause of signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corner reflectors</td>
<td>very bright!</td>
<td>Bridges, cities</td>
<td>Intersecting surfaces reflect strongly (Cardinal effect)</td>
</tr>
<tr>
<td>Specular surfaces</td>
<td>very dark</td>
<td>Calm water, pavement, dry lake beds</td>
<td>Smooth surfaces reflect energy away</td>
</tr>
</tbody>
</table>

Dr. A. Bhattacharya
Effect of surface roughness- Internal waves

ERS Images (C band, 23°, VV) in false colors

Gibraltar strait
Image: 90 km x 100 km

• Internal waves (l=2 km)
Origin: difference of salinity between Atlantic Ocean and Mediterranean sea + tide effects

From ‘ERS-1 : 500 days in orbit’. Published by the European Space Agency’
Effect of surface roughness - Oil sheet

ERS Image (C band, 23°, VV) in false colors.

France - Côte d'Azur
90 km x 90 km, 19/09/91

- Decrease of the sea local roughness because of oil sheets:

Application: detection of oil sheets, natural or illicit.

From ‘ERS-1: 500 days in orbit’.
Published by the European Space Agency’
Topographic effects

- Sedimentary basin (Kalimantan, Indonesia)
 RADARSAT F4 (C band, ~ 45°, resolution : 8 m)

- Tropical forest in French Guyana
 ERS (C band, 23°, VV, resolution : 20 m)

 > The SAR side looking makes it extremely sensible to the relief, even under vegetation cover in tropical forests.
Multitemporal analysis

Red: October 1997
Green: December 1997
Blue: January 1998

Multidate ERS data
Use of polarisation

Rice mapping using HH/VV at a single date

September 6th, 2004 Hongze area

Magenta=HH, Green=VV yellow=rice, red=urban, black=other
Sub-canopy penetration

Varzea Dry Season

Varzea Wet Season

P-band image

P-band image

Document S. Saatchi, JPL
Subsurface penetration

Document P. Paillou

Dr. A. Bhattacharya
Tree height inversion using Polarimetric Interferometry (PolinSAR)

Dr. A. Bhattacharya

Garestier, 2006
Accurate range measurement
Radar Interferometry

Relief

Terrain displacement

Etna
iso-altitude curves
Digital elevation models

Landers
iso-displacement curves
Cartography of terrain displacements