
Spatial Filtering



Background
 Filter term in “Digital image processing” is referred to the 

subimage
 There are others term to call subimage such as mask, kernel, 

template, or window
 The value in a filter subimage are referred as coefficients, 

rather than pixels.



Basics of Spatial Filtering
 The concept of filtering has its roots in the use of the Fourier 

transform for signal processing in the so-called frequency 
domain.

 Spatial filtering term is the filtering operations that are 
performed directly on the pixels of an image



Mechanics of spatial filtering
 The process consists simply of moving the filter mask from 

point to point in an image.
 At each point (x,y) the response of the filter at that point is 

calculated using a predefined relationship



Linear spatial filtering
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Note: Linear filtering
 The coefficient w(0,0) coincides with image value f(x,y), 

indicating that the mask is centered at (x,y) when the 
computation of sum of products takes place.

 For a mask of size mxn, we assume that m-2a+1 and 
n=2b+1, where a and b are nonnegative integer. Then m 
and n are odd.



Linear filtering
 In general, linear filtering of an image f of size MxN with a 

filter mask of size mxn is given by the expression:


 


a

as

b

bt
tysxftswyxg ),(),(),(



Discussion
 The process of linear filtering similar to a frequency domain 

concept called “convolution”
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Where the w’s are mask coefficients, the z’s are the value of the image gray levels 
corresponding to those coefficients



Nonlinear spatial filtering
 Nonlinear spatial filters also operate on neighborhoods, and 

the mechanics of sliding a mask past an image are the same as 
was just outlined.

 The filtering operation is based conditionally on the values of 
the pixels in the neighborhood under consideration



Smoothing Spatial Filters
 Smoothing filters are used for blurring and for noise 

reduction.
– Blurring is used in preprocessing steps, such as removal of 

small details from an image prior to object extraction, and 
bridging of small gaps in lines or curves

– Noise reduction can be accomplished by blurring



Type of smoothing filtering
 There are 2 way of smoothing spatial filters
 Smoothing Linear Filters
 Order-Statistics Filters



Smoothing Linear Filters
 Linear spatial filter is simply the average of the pixels 

contained in the neighborhood of the filter mask.
 Sometimes called “averaging filters”.
 The idea is replacing the value of every pixel in an image by 

the average of the gray levels in the neighborhood defined by 
the filter mask.



Two 3x3 Smoothing Linear Filters
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5x5 Smoothing Linear Filters
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Smoothing Linear Filters
 The general implementation for filtering an MxN image with 

a weighted averaging filter of size mxn is given by the 
expression
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Result of Smoothing Linear Filters

[3x3] [5x5] [7x7]

Original Image



Order-Statistics Filters
 Order-statistics filters are nonlinear spatial filters whose 

response is based on ordering (ranking) the pixels 
contained in the image area encompassed by the filter, 
and then replacing the value of the center pixel with the 
value determined by the ranking result.

 Best-known “median filter”



Process of Median filter

 Corp region of 
neighborhood

 Sort the values of the 
pixel in our region

 In the MxN mask the 
median is MxN div 2 
+1
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Result of median filter

Noise from Glass effect Remove noise by median filter



Sharpening Spatial Filters
 The principal objective of sharpening is to highlight fine 

detail in an image or to enhance detail that has been blurred, 
either in error or as an natural effect of a particular method 
of image acquisition.



Introduction
 The image blurring is accomplished in the spatial domain by 

pixel averaging in a neighborhood.
 Since averaging is analogous to integration.
 Sharpening could be accomplished by spatial differentiation.



Foundation
 We are interested in the behavior of these derivatives in areas 

of constant gray level(flat segments), at the onset and end of 
discontinuities(step and ramp discontinuities), and along 
gray-level ramps.

 These types of discontinuities can be noise points, lines, and 
edges.



Definition for a first derivative
 Must be zero in flat segments
 Must be nonzero at the onset of a gray-level step or ramp; 

and
 Must be nonzero along ramps.



Definition for a second derivative
 Must be zero in flat areas;
 Must be nonzero at the onset and end of a gray-level step or 

ramp;
 Must be zero along ramps of constant slope



Definition of the 1st-order derivative
 A basic definition of the first-order derivative of a one-

dimensional function f(x) is 
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Definition of the 2nd-order derivative
 We define a second-order derivative as the difference
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Gray-level profile
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Derivative of image profile
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Analyze
 The 1st-order derivative is nonzero along the entire ramp, 

while the 2nd-order derivative is nonzero only at the onset 
and end of the ramp.

 The response at and around the point is much stronger for 
the 2nd- than for the 1st-order derivative

1st make thick edge and 2nd make thin edge



The Laplacian (2nd order derivative)
 Shown by Rosenfeld and Kak[1982] that the simplest 

isotropic derivative operator is the Laplacian is defined as
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Discrete form of derivative

),(2),1(),1(2

2

yxfyxfyxf
x

f





),(2)1,()1,(2

2

yxfyxfyxf
y

f





f(x+1,y)f(x,y)f(x-1,y)

f(x,y+1)

f(x,y)

f(x,y-1)



2-Dimentional Laplacian
 The digital implementation of the 2-Dimensional Laplacian is 

obtained by summing 2 components
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Laplacian
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Implementation
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If the center coefficient is negative

If the center coefficient is positive

Where f(x,y) is the original image                                                       
is Laplacian filtered image

g(x,y) is the sharpen image 



Implementation



Implementation

Filtered = Conv(image,mask)



Implementation

filtered = filtered - Min(filtered) 
filtered = filtered * (255.0/Max(filtered)) 



Implementation
sharpened = image + filtered 
sharpened = sharpened - Min(sharpened ) 
sharpened = sharpened * (255.0/Max(sharpened )) 



Algorithm
 Using Laplacian filter to original image

 And then add the image result from step 1 and the original 
image 



Simplification
 We will apply two step to be one mask
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Unsharp masking
 A process to sharpen images consists of subtracting a 

blurred version of an image from the image itself. This 
process, called unsharp masking, is expressed as
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blurred version of   



High-boost filtering
 A high-boost filtered image, fhb is defined at any point (x,y) 

as
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This equation is applicable general and does not state explicity how the sharp 
image is obtained



High-boost filtering and Laplacian
 If we choose to use the Laplacian, then we know fs(x,y)
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The Gradient (1st order derivative)
 First Derivatives in image processing are implemented 

using the magnitude of the gradient.
 The gradient of function f(x,y) is 
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Gradient
 The magnitude of this vector is given by
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This mask is simple, and no isotropic. Its result only 
horizontal and vertical.



Robert’s Method
 The simplest approximations to a first-order derivative 

that satisfy the conditions stated in that section are
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Robert’s Method
 These mask are referred to as the Roberts cross-gradient 

operators.
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Sobel’s Method

 Mask of even size are awkward to apply. 
 The smallest filter mask should be 3x3.
 The difference between the third and first rows of the 3x3 

mage region approximate derivative in x-direction, and the 
difference between the third and first column approximate 
derivative in y-direction.



Sobel’s Method
 Using this equation
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Spatial Filtering Methods 
(or Mask Processing Methods)

output image      



Spatial Filtering

 The word “filtering” has been borrowed from the frequency 
domain.

 Filters are classified as:
 Low-pass (i.e., preserve low frequencies)
 High-pass (i.e., preserve high frequencies)
 Band-pass (i.e., preserve frequencies within a band)
 Band-reject (i.e., reject frequencies within a band)



Spatial Filtering (cont’d)

 Spatial filtering is defined by:
(1) A neighborhood
(2) An operation that is performed on the pixels inside the 

neighborhood

output image      



Spatial Filtering - Neighborhood
• Typically, the neighborhood is rectangular and its size

is much smaller than that of f(x,y)
- e.g., 3x3 or 5x5



Spatial filtering - Operation
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Spatial Filtering - Example

 A filtered image is generated as the center of the mask  moves to 
every pixel in the input image.



Handling Pixels Close to Boundaries

pad with zeroes

or
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Linear vs Non-Linear
Spatial Filtering Methods
 A filtering method is linear when the output is a weighted sum of the 

input pixels.

 Methods that do not satisfy the above property are called non-linear.
 e.g., 



Linear Spatial Filtering Methods
 Two main linear spatial filtering methods:
 Correlation
 Convolution



Correlation

Output
Image

w(i,j)

f(i,j)

/2 /2

/2 /2
( , ) ( , ) ( , ) ( , ) ( , )

K K

s K t K
g x y w x y f x y w s t f x s y t

 

     

g(i,j)



Correlation (cont’d)

Often used in applications where we need to 
measure the similarity between images or parts of 
images
(e.g., pattern matching).



Convolution
 Similar to correlation except that the mask is first flipped

both horizontally and vertically.

Note: if w(x,y) is symmetric, that is w(x,y)=w(-x,-y), then 
convolution is equivalent to correlation!
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Example

Correlation:

Convolution:



How do we choose the elements of a mask?

 Typically, by sampling certain functions.

Gaussian
1st derivative
of Gaussian

2nd derivative
of Gaussian



Filters
 Smoothing (i.e., low-pass filters)
 Reduce noise and eliminate small details.
 The elements of the mask must be positive.
 Sum of mask elements is 1 (after normalization)

Gaussian



Filters (cont’d)
 Sharpening (i.e., high-pass filters)
 Highlight fine detail or enhance detail that has been blurred.
 The elements of the mask contain both positive and negative

weights.
 Sum of the mask weights is 0 (after normalization)

1st derivative
of Gaussian

2nd derivative
of Gaussian



Smoothing Filters: Averaging
(Low-pass filtering)



Smoothing Filters: Averaging (cont’d)

 Mask size determines the degree of smoothing and loss of detail.

3x3 5x5 7x7

15x15 25x25

original



Smoothing Filters: Averaging (cont’d)

15 x 15 averaging image thresholding

Example: extract, largest, brightest objects



Smoothing filters: Gaussian

 The weights are samples of the Gaussian function

mask size is
a function of σ :

σ = 1.4



Smoothing filters: Gaussian (cont’d)

• σ controls the amount of smoothing 
• As σ increases, more samples must be obtained to represent 
the Gaussian function accurately.

σ = 3



Smoothing filters: Gaussian (cont’d)



Averaging vs Gaussian Smoothing

Averaging

Gaussian



Smoothing Filters: Median Filtering
(non-linear)

 Very effective for removing “salt and pepper” noise (i.e., random 
occurrences of black and white pixels).

averaging
median 
filtering



Smoothing Filters: Median Filtering (cont’d)

 Replace each pixel by the median in a neighborhood around 
the pixel.



Sharpening Filters (High Pass filtering)

 Useful for emphasizing transitions in image intensity (e.g., edges).



Sharpening Filters (cont’d)
 Note that the response of high-pass filtering might be negative.
 Values must be re-mapped to [0, 255]

sharpened imagesoriginal image



Sharpening Filters: Unsharp Masking

 Obtain a sharp image by subtracting a lowpass filtered (i.e., 
smoothed) image from the original image:

- =



Sharpening Filters: High Boost

 Image sharpening emphasizes edges but details (i.e., low 
frequency components) might be lost.

 High boost filter: amplify input image, then subtract a 
lowpass image.

(A-1) + =



Sharpening Filters: Unsharp Masking 
(cont’d)
 If A=1, we get a high pass filter

 If A>1, part of the original image is added back to the high 
pass filtered image.



Sharpening Filters: Unsharp Masking
(cont’d)

A=1.4 A=1.9



Sharpening Filters: Derivatives

 Taking the derivative of an image results in sharpening the image.
 The derivative of an image can be computed using the gradient.



Sharpening Filters: Derivatives (cont’d)

 The gradient is a vector which has magnitude and direction:

or

(approximation)
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Sharpening Filters: Derivatives (cont’d)
 Magnitude: provides information about edge strength.

 Direction: perpendicular to the direction of the edge.



Sharpening Filters: Gradient Computation
 Approximate gradient using finite differences:

sensitive to horizontal edges

sensitive to vertical edges

Δx



Sharpening Filters: Gradient Computation 
(cont’d)



Example
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Sharpening Filters: Gradient Computation 
(cont’d)

 We can implement         and         using masks:

• Example: approximate gradient at z5

(x+1/2,y)

(x,y+1/2) *
*

good approximation
at (x+1/2,y)

good approximation
at (x,y+1/2)



Sharpening Filters: Gradient Computation 
(cont’d)

 A different approximation of the gradient:

•We can implement         and         using the following masks:

*

(x+1/2,y+1/2)

good approximation



Sharpening Filters: Gradient Computation 
(cont’d)

 Example: approximate gradient at z5

• Other approximations

Sobel



Example

f
y



f
x





Sharpening Filters: Laplacian

The Laplacian (2nd derivative)  is defined as:

(dot product)

Approximate
derivatives:



Sharpening Filters: Laplacian (cont’d)

Laplacian Mask

detect zero-crossings



Sharpening Filters: Laplacian (cont’d)

Laplacian Sobel



 Cross-correlation in which the filter is flipped 
horizontally and vertically is called convolution

Neighborhood Processing (filtering)

2D filtering
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 If the kernel is symmetric

convolution = cross-correlation

Neighborhood Processing (filtering)

Convolution vs. Cross-Correlation
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Neighborhood Processing 
2D filtering

Noise

 Types of noise:
 Salt and pepper noise
 Impulse noise
 Gaussian noise

 Due to
 transmission errors
 dead CCD pixels 
 specks on lens
 can be specific to a sensor



Neighborhood Processing 

Practical Noise Reduction
 How can we 

remove noise?

 Replace each pixel with 
the average of a 
kxk window around it

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 100 130 110 120 110 0 0
0 0 0 110 90 100 90 100 0 0
0 0 0 130 100 90 130 110 0 0
0 0 0 120 100 130 110 120 0 0
0 0 0 90 110 80 120 100 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

104



Neighborhood Processing (filtering)

Mean filtering

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Neighborhood Processing (filtering)

Mean filtering

0 10 20 30 30 30 20 10
0 20 40 60 60 60 40 20
0 30 60 90 90 90 60 30
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10
10 10 10 0 0 0 0 0

],[ yxf ],[ yxg



Neighborhood Processing (filtering) 

Effect of mean filters

3x3 5x5 7x7
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Neighborhood Processing (filtering)

Mean kernel
 What’s the kernel for a 3x3 mean filter?

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

],[ yxf

],[ vuh



Neighborhood Processing (filtering)

Mean kernel
 What’s the kernel for a 3x3 mean filter?

E           Equal weight to all pixels 
within  the neighborhood

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 1 1
1 1 1
1 1 1

],[ yxf

],[ vuh

1/9



Neighborhood Processing (filtering)

Gaussian Filtering
 A Gaussian kernel gives less weight to pixels 

further from the center 
of the window0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

is a discrete approximation
of a Gaussian function:

1 2 1
2 4 2
1 2 1

],[ yxf

],[ vuh


16
1



Neighborhood Processing (filtering)

Mean vs. Gaussian filtering
Input image 

Gaussian filteringMean Filtering

Gaussian filter, 20x20, σ = 5Mean filter, 20x20



Neighborhood Processing (filtering)

Mean vs. Gaussian filtering



Neighborhood Processing (filtering)

Gaussian Filtering

 Low-pass filter
 Smooth color variation (low 

frequency) is  preserved
 Sharp edges (high frequency) are 

removed



Neighborhood Processing (filtering)

Median filters

 A Median Filter operates over a window by selecting the 
median intensity in the window.

Image credit:  Wikipedia – page on 
Median Filter



Neighborhood Processing (filtering)

Median filters

 Is a median filter a kind of convolution?
No, median filter is an example of non-linear filtering
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Salt&Pepper
Noise



Gaussian 
noise



Neighborhood Processing (filtering)

Median filters

 What advantage does a median filter have over a mean filter? 
Better at removing Salt & Pepper noise

 Disadvantage:
Slow



Neighborhood Processing (filtering)

Derivatives and Convolution
 Image Derivatives and Gradients
 Used for Edge/Corner Detection
 Computed with Finite Differences Filters

 Laplacian of Gaussians (LoG) Filter
 Used for Edge/Blob Detection and 

Image Enhancement
 Approximated using Difference of Gaussians



Reading: Forsyth & Ponce, 8.1-8.2

First Derivative
 Recall Sharp changes in gray level of the input image 

correspond to “peaks or valleys” of the first-derivative of the 
input signal.

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



Reading: Forsyth & Ponce, 8.1-8.2

First Derivative and convolution

 How can we approximate it 
for a discrete function?

 Is this operation shift-invariant?

 Is it linear? 
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Reading: Forsyth & Ponce, 8.1-8.2

First Derivative and convolution
 Finite Difference

xx-h

x x+h
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Slide credit: Wikipedia



Reading: Forsyth & Ponce, 8.1-8.2

First Derivative and convolution
 Finite Difference –The order of an error 

can be derived using Taylor Theorem

Slide credit: Wikipedia



Reading: Forsyth & Ponce, 8.1-8.2

First Derivative and convolution
 Pixel Size
 Using Finite Central Difference

 We need a kernel          such thatx
yxxfyxxffx 


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Neighborhood Processing (filtering)

Finite differences – responds to edges

Dark = negative
White = positive
Gray = 0

fx



Neighborhood Processing (filtering)

Finite differences - responding to noise

Increasing noise ->
(this is zero mean additive gaussian noise)

fx fx fx



Neighborhood Processing (filtering)

Finite differences and noise
 Finite difference filters respond strongly to noise
 Noisy pixels look very different from their neighbours
 The larger the noise  the stronger is the response

 How can we eliminate the response to noise?
 Most pixels in images look similar to their neighbours (even at an edge)
 Smooth the image (mean/gaussian filtering)



Neighborhood Processing (filtering)

Smoothing and Differentiation
 Smoothing before differentiation = two convolutions

 Convolution is associative

)( Hx

fHfH xx  )()(

)( Hy

)( fHx 



The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels

fHx  )(

Neighborhood Processing (filtering)

Smoothing and Differentiation



 Yet another approximation frequently used

Sobel kernels
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Neighborhood Processing (filtering)



Neighborhood Processing (filtering)

Image Gradients
 Recall for a function of two variables
 The gradient at a point (x,y)

 Gradient Magnitude

 Gradient Orientation
 direction of the “steepest ascend”
 orthogonal to object boundaries in the image
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Neighborhood Processing (filtering)

Image Gradient for Edge Detection

 Typical application where image gradients are used is image edge 
detection
 find points with large image gradients 

Canny edge detector suppresses
non-extrema Gradient points



Reading: Forsyth & Ponce, 8.1-8.2

Second derivatives and convolution
 Peaks or valleys of the first-derivative of the input signal, 

correspond to “zero-crossings” of the second-derivative of the 
input signal.

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



Neighborhood Processing (filtering)

Second derivatives and convolution

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Neighborhood Processing (filtering)

Second derivatives and convolution
 Better localized edges
 But more sensitive to noise



Neighborhood Processing (filtering)

Second derivatives and convolution

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



Neighborhood Processing (filtering)

Second Image Derivatives
 Laplace operator 
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Neighborhood Processing (filtering)

Second Image Derivatives
 Laplacian Zero Crossing

 Used for edge detection 
(alternative to computing Gradient extrema)

http://homepages.inf.ed.ac.uk/rbf/HIPR2/zeros.htm

magnitude of
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Neighborhood Processing (filtering) 

Laplacian Filtering

-Zero on uniform regions
-Positive  on one side of an edge
-Negative  on the other side
-Zero at some point in between 
on the edge itself
 band-pass filter (Suppresses both high and low frequencies)

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



Neighborhood Processing (filtering)

Laplacian of a Gaussian (LoG) 
 Smooth before differentiation 

(remember associative property of convolution) LoGG

2

22

2
2

22

4 2
11),( 



yx

eyxyxLoG











 


http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



Neighborhood Processing (filtering)

Laplacian of a Gaussian (LoG) 

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Suppresses both high and low frequencies



Neighborhood Processing (filtering)

Laplacian of a Gaussian (LoG) 

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



Neighborhood Processing (filtering)

Laplacian of a Gaussian (LoG) 

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



Neighborhood Processing (filtering)

Laplacian of a Gaussian (LoG) 
 Can be approximated by a difference of two 

Gaussians (DoG)

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



Neighborhood Processing (filtering)

DoG vs. LoG
 Separable (product decomposition)  more efficient
 Can explain band-pass filter since Gaussian is a low-pass 

filter.

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



Neighborhood Processing (filtering)

LoG for Blob Detection
 Cross correlation with a filter can be viewed as 

comparing a little “picture” of  what you want to find 
against all local regions in the image.

 Scale of blob (size ; radius in pixels) 
is determined by the sigma parameter 
of the LoG filter.

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



Neighborhood Processing (filtering)

LoG for Blob Detection

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf



Histogram Equalization


