
Spatial Filtering

Background
 Filter term in “Digital image processing” is referred to the

subimage
 There are others term to call subimage such as mask, kernel,

template, or window
 The value in a filter subimage are referred as coefficients,

rather than pixels.

Basics of Spatial Filtering
 The concept of filtering has its roots in the use of the Fourier

transform for signal processing in the so-called frequency
domain.

 Spatial filtering term is the filtering operations that are
performed directly on the pixels of an image

Mechanics of spatial filtering
 The process consists simply of moving the filter mask from

point to point in an image.
 At each point (x,y) the response of the filter at that point is

calculated using a predefined relationship

Linear spatial filtering

f(x-1,y-1) f(x-1,y) f(x-1,y+1)

f(x,y-1) f(x,y) f(x,y+1)

f(x+1,y-1) f(x+1,y) f(x+1,y+1)

w(-1,-1) w(-1,0) w(-1,1)

w(0,-1) w(0,0) w(0,1)

w(1,-1) w(1,0) w(1,1)

The result is the sum of
products of the mask
coefficients with the
corresponding pixels
directly under the mask

Pixels of image

Mask coefficients
w(-1,-1) w(-1,0) w(-1,1)

w(0,-1) w(0,0) w(0,1)

w(1,-1) w(1,0) w(1,1)

)1,1()1,1(),1()0,1()1,1()1,1(
)1,()1,0(),()0,0()1,()1,0(

)1,1()1,1(),1()0,1()1,1()1,1(






yxfwyxfwyxfw
yxfwyxfwyxfw

yxfwyxfwyxfw),(yxf

Note: Linear filtering
 The coefficient w(0,0) coincides with image value f(x,y),

indicating that the mask is centered at (x,y) when the
computation of sum of products takes place.

 For a mask of size mxn, we assume that m-2a+1 and
n=2b+1, where a and b are nonnegative integer. Then m
and n are odd.

Linear filtering
 In general, linear filtering of an image f of size MxN with a

filter mask of size mxn is given by the expression:


 


a

as

b

bt
tysxftswyxg),(),(),(

Discussion
 The process of linear filtering similar to a frequency domain

concept called “convolution”





mn

i
iimnmn zwzwzwzwR

1
2211 ...





9

1
992211 ...

i
ii zwzwzwzwR

Simplify expression
w1 w2 w3

w4 w5 w6

w7 w8 w9

Where the w’s are mask coefficients, the z’s are the value of the image gray levels
corresponding to those coefficients

Nonlinear spatial filtering
 Nonlinear spatial filters also operate on neighborhoods, and

the mechanics of sliding a mask past an image are the same as
was just outlined.

 The filtering operation is based conditionally on the values of
the pixels in the neighborhood under consideration

Smoothing Spatial Filters
 Smoothing filters are used for blurring and for noise

reduction.
– Blurring is used in preprocessing steps, such as removal of

small details from an image prior to object extraction, and
bridging of small gaps in lines or curves

– Noise reduction can be accomplished by blurring

Type of smoothing filtering
 There are 2 way of smoothing spatial filters
 Smoothing Linear Filters
 Order-Statistics Filters

Smoothing Linear Filters
 Linear spatial filter is simply the average of the pixels

contained in the neighborhood of the filter mask.
 Sometimes called “averaging filters”.
 The idea is replacing the value of every pixel in an image by

the average of the gray levels in the neighborhood defined by
the filter mask.

Two 3x3 Smoothing Linear Filters

1 1 1

1 1 1

1 1 1

1 2 1

2 4 2

1 2 1


9
1 

16
1

Standard average Weighted average

5x5 Smoothing Linear Filters

1 1 1

1 1 1

1 1 1

1

1

1

1

1

1

1 1 1 1 1

1 1 1 1 1


25
1

Smoothing Linear Filters
 The general implementation for filtering an MxN image with

a weighted averaging filter of size mxn is given by the
expression





 

 


 a

as

b

bt

a

as

b

bt

tsw

tysxftsw
yxg

),(

),(),(
),(

Result of Smoothing Linear Filters

[3x3] [5x5] [7x7]

Original Image

Order-Statistics Filters
 Order-statistics filters are nonlinear spatial filters whose

response is based on ordering (ranking) the pixels
contained in the image area encompassed by the filter,
and then replacing the value of the center pixel with the
value determined by the ranking result.

 Best-known “median filter”

Process of Median filter

 Corp region of
neighborhood

 Sort the values of the
pixel in our region

 In the MxN mask the
median is MxN div 2
+1

10 15 20

20 100 20

20 20 25

10, 15, 20, 20, 20, 20, 20, 25, 100

5th

Result of median filter

Noise from Glass effect Remove noise by median filter

Sharpening Spatial Filters
 The principal objective of sharpening is to highlight fine

detail in an image or to enhance detail that has been blurred,
either in error or as an natural effect of a particular method
of image acquisition.

Introduction
 The image blurring is accomplished in the spatial domain by

pixel averaging in a neighborhood.
 Since averaging is analogous to integration.
 Sharpening could be accomplished by spatial differentiation.

Foundation
 We are interested in the behavior of these derivatives in areas

of constant gray level(flat segments), at the onset and end of
discontinuities(step and ramp discontinuities), and along
gray-level ramps.

 These types of discontinuities can be noise points, lines, and
edges.

Definition for a first derivative
 Must be zero in flat segments
 Must be nonzero at the onset of a gray-level step or ramp;

and
 Must be nonzero along ramps.

Definition for a second derivative
 Must be zero in flat areas;
 Must be nonzero at the onset and end of a gray-level step or

ramp;
 Must be zero along ramps of constant slope

Definition of the 1st-order derivative
 A basic definition of the first-order derivative of a one-

dimensional function f(x) is

)()1(xfxf
x
f





Definition of the 2nd-order derivative
 We define a second-order derivative as the difference

).(2)1()1(2

2

xfxfxf
x

f





Gray-level profile

660 1 2 30 0 2 2 2 2 23 3 3 3 30 0 0 0 0 0 0 0 7 7 5 5
7
6
5
4
3
2
1
0

Derivative of image profile

0 0 0 1 2 3 2 0 0 2 2 6 3 3 2 2 3 3 0 0 0 0 0 0 7 7 6 5 5 3

0 0 1 1 1-1-2 0 2 0 4-3 0-1 0 1 0-3 0 0 0 0 0-7 0-1-1 0-2

0-1 0 0-2-1 2 2-2 4-7 3-1 1 1-1-3 3 0 0 0 0-7 7-1 0 1-2

first

second

Analyze
 The 1st-order derivative is nonzero along the entire ramp,

while the 2nd-order derivative is nonzero only at the onset
and end of the ramp.

 The response at and around the point is much stronger for
the 2nd- than for the 1st-order derivative

1st make thick edge and 2nd make thin edge

The Laplacian (2nd order derivative)
 Shown by Rosenfeld and Kak[1982] that the simplest

isotropic derivative operator is the Laplacian is defined as

2

2

2

2
2

y
f

x
ff










Discrete form of derivative

),(2),1(),1(2

2

yxfyxfyxf
x

f





),(2)1,()1,(2

2

yxfyxfyxf
y

f





f(x+1,y)f(x,y)f(x-1,y)

f(x,y+1)

f(x,y)

f(x,y-1)

2-Dimentional Laplacian
 The digital implementation of the 2-Dimensional Laplacian is

obtained by summing 2 components

2

2

2

2
2

x
f

x
ff










),(4)1,()1,(),1(),1(2 yxfyxfyxfyxfyxff 

1

1

-4 1

1

Laplacian

1

1

-4 1

1

0 0

0 0

0

0

-4 0

0

1 1

1 1

1

1

-8 1

1

1 1

1 1

Laplacian

-1

-1

4 -1

-1

0 0

0 0

0

0

4 0

0

-1 -1

-1 -1

-1

-1

8 -1

-1

-1 -1

-1 -1

Implementation









),(),(
),(),(

),(2

2

yxfyxf
yxfyxf

yxg

),(2 yxf

If the center coefficient is negative

If the center coefficient is positive

Where f(x,y) is the original image
is Laplacian filtered image

g(x,y) is the sharpen image

Implementation

Implementation

Filtered = Conv(image,mask)

Implementation

filtered = filtered - Min(filtered)
filtered = filtered * (255.0/Max(filtered))

Implementation
sharpened = image + filtered
sharpened = sharpened - Min(sharpened)
sharpened = sharpened * (255.0/Max(sharpened))

Algorithm
 Using Laplacian filter to original image

 And then add the image result from step 1 and the original
image

Simplification
 We will apply two step to be one mask

),(4)1,()1,(),1(),1(),(),(yxfyxfyxfyxfyxfyxfyxg 

)1,()1,(),1(),1(),(5),( yxfyxfyxfyxfyxfyxg

-1

-1

5 -1

-1

0 0

0 0

-1

-1

9 -1

-1

-1 -1

-1 -1

Unsharp masking
 A process to sharpen images consists of subtracting a

blurred version of an image from the image itself. This
process, called unsharp masking, is expressed as

),(),(),(yxfyxfyxfs 

),(yxf s

),(yxf),(yxf
Where denotes the sharpened image obtained by unsharp masking, and is a
blurred version of

High-boost filtering
 A high-boost filtered image, fhb is defined at any point (x,y)

as

1),(),(),( AwhereyxfyxAfyxfhb

),(),(),()1(),(yxfyxfyxfAyxfhb 

),(),()1(),(yxfyxfAyxf shb 

This equation is applicable general and does not state explicity how the sharp
image is obtained

High-boost filtering and Laplacian
 If we choose to use the Laplacian, then we know fs(x,y)









),(),(
),(),(

2

2

yxfyxAf
yxfyxAf

fhb
If the center coefficient is negative

If the center coefficient is positive

-1

-1

A+4 -1

-1

0 0

0 0

-1

-1

A+8 -1

-1

-1 -1

-1 -1

The Gradient (1st order derivative)
 First Derivatives in image processing are implemented

using the magnitude of the gradient.
 The gradient of function f(x,y) is


































y
f
x
f

G
G

f
y

x

Gradient
 The magnitude of this vector is given by

yxyx GGGGfmag  22)(

-1 1

1

-1

Gx

Gy

This mask is simple, and no isotropic. Its result only
horizontal and vertical.

Robert’s Method
 The simplest approximations to a first-order derivative

that satisfy the conditions stated in that section are

2
68

2
59)()(zzzzf 

6859 zzzzf 

z1 z2 z3

z4 z5 z6

z7 z8 z9

Gx = (z9-z5) and Gy = (z8-z6)

Robert’s Method
 These mask are referred to as the Roberts cross-gradient

operators.

-1 0

0 1

-10

01

Sobel’s Method

 Mask of even size are awkward to apply.
 The smallest filter mask should be 3x3.
 The difference between the third and first rows of the 3x3

mage region approximate derivative in x-direction, and the
difference between the third and first column approximate
derivative in y-direction.

Sobel’s Method
 Using this equation

)2()2()2()2(741963321987 zzzzzzzzzzzzf 

-1 -2 -1

0 0 0

1 2 1 1

-2

10

0

0-1

2

-1

Spatial Filtering Methods
(or Mask Processing Methods)

output image

Spatial Filtering

 The word “filtering” has been borrowed from the frequency
domain.

 Filters are classified as:
 Low-pass (i.e., preserve low frequencies)
 High-pass (i.e., preserve high frequencies)
 Band-pass (i.e., preserve frequencies within a band)
 Band-reject (i.e., reject frequencies within a band)

Spatial Filtering (cont’d)

 Spatial filtering is defined by:
(1) A neighborhood
(2) An operation that is performed on the pixels inside the

neighborhood

output image

Spatial Filtering - Neighborhood
• Typically, the neighborhood is rectangular and its size

is much smaller than that of f(x,y)
- e.g., 3x3 or 5x5

Spatial filtering - Operation

1 1

1 1

(,) (,) (,)
s t

g x y w s t f x s y t
 

   

Assume the origin of the
mask is the center of the
mask.

/2 /2

/2 /2

(,) (,) (,)
K K

s K t K
g x y w s t f x s y t

 

   

for a K x K mask:

for a 3 x 3 mask:

Spatial Filtering - Example

 A filtered image is generated as the center of the mask moves to
every pixel in the input image.

Handling Pixels Close to Boundaries

pad with zeroes

or

0 0 0 ……………………….0

0 0 0 …
…

…
…

…
…

…
…

…
.0

Linear vs Non-Linear
Spatial Filtering Methods
 A filtering method is linear when the output is a weighted sum of the

input pixels.

 Methods that do not satisfy the above property are called non-linear.
 e.g.,

Linear Spatial Filtering Methods
 Two main linear spatial filtering methods:
 Correlation
 Convolution

Correlation

Output
Image

w(i,j)

f(i,j)

/2 /2

/2 /2
(,) (,) (,) (,) (,)

K K

s K t K
g x y w x y f x y w s t f x s y t

 

     

g(i,j)

Correlation (cont’d)

Often used in applications where we need to
measure the similarity between images or parts of
images
(e.g., pattern matching).

Convolution
 Similar to correlation except that the mask is first flipped

both horizontally and vertically.

Note: if w(x,y) is symmetric, that is w(x,y)=w(-x,-y), then
convolution is equivalent to correlation!

/2 /2

/2 /2
(,) (,) (,) (,) (,)

K K

s K t K
g x y w x y f x y w s t f x s y t

 

     

Example

Correlation:

Convolution:

How do we choose the elements of a mask?

 Typically, by sampling certain functions.

Gaussian
1st derivative
of Gaussian

2nd derivative
of Gaussian

Filters
 Smoothing (i.e., low-pass filters)
 Reduce noise and eliminate small details.
 The elements of the mask must be positive.
 Sum of mask elements is 1 (after normalization)

Gaussian

Filters (cont’d)
 Sharpening (i.e., high-pass filters)
 Highlight fine detail or enhance detail that has been blurred.
 The elements of the mask contain both positive and negative

weights.
 Sum of the mask weights is 0 (after normalization)

1st derivative
of Gaussian

2nd derivative
of Gaussian

Smoothing Filters: Averaging
(Low-pass filtering)

Smoothing Filters: Averaging (cont’d)

 Mask size determines the degree of smoothing and loss of detail.

3x3 5x5 7x7

15x15 25x25

original

Smoothing Filters: Averaging (cont’d)

15 x 15 averaging image thresholding

Example: extract, largest, brightest objects

Smoothing filters: Gaussian

 The weights are samples of the Gaussian function

mask size is
a function of σ :

σ = 1.4

Smoothing filters: Gaussian (cont’d)

• σ controls the amount of smoothing
• As σ increases, more samples must be obtained to represent
the Gaussian function accurately.

σ = 3

Smoothing filters: Gaussian (cont’d)

Averaging vs Gaussian Smoothing

Averaging

Gaussian

Smoothing Filters: Median Filtering
(non-linear)

 Very effective for removing “salt and pepper” noise (i.e., random
occurrences of black and white pixels).

averaging
median
filtering

Smoothing Filters: Median Filtering (cont’d)

 Replace each pixel by the median in a neighborhood around
the pixel.

Sharpening Filters (High Pass filtering)

 Useful for emphasizing transitions in image intensity (e.g., edges).

Sharpening Filters (cont’d)
 Note that the response of high-pass filtering might be negative.
 Values must be re-mapped to [0, 255]

sharpened imagesoriginal image

Sharpening Filters: Unsharp Masking

 Obtain a sharp image by subtracting a lowpass filtered (i.e.,
smoothed) image from the original image:

- =

Sharpening Filters: High Boost

 Image sharpening emphasizes edges but details (i.e., low
frequency components) might be lost.

 High boost filter: amplify input image, then subtract a
lowpass image.

(A-1) + =

Sharpening Filters: Unsharp Masking
(cont’d)
 If A=1, we get a high pass filter

 If A>1, part of the original image is added back to the high
pass filtered image.

Sharpening Filters: Unsharp Masking
(cont’d)

A=1.4 A=1.9

Sharpening Filters: Derivatives

 Taking the derivative of an image results in sharpening the image.
 The derivative of an image can be computed using the gradient.

Sharpening Filters: Derivatives (cont’d)

 The gradient is a vector which has magnitude and direction:

or

(approximation)

| | | |f f
x y
 


 

Sharpening Filters: Derivatives (cont’d)
 Magnitude: provides information about edge strength.

 Direction: perpendicular to the direction of the edge.

Sharpening Filters: Gradient Computation
 Approximate gradient using finite differences:

sensitive to horizontal edges

sensitive to vertical edges

Δx

Sharpening Filters: Gradient Computation
(cont’d)

Example

f
x



f
y



Sharpening Filters: Gradient Computation
(cont’d)

 We can implement and using masks:

• Example: approximate gradient at z5

(x+1/2,y)

(x,y+1/2) *
*

good approximation
at (x+1/2,y)

good approximation
at (x,y+1/2)

Sharpening Filters: Gradient Computation
(cont’d)

 A different approximation of the gradient:

•We can implement and using the following masks:

*

(x+1/2,y+1/2)

good approximation

Sharpening Filters: Gradient Computation
(cont’d)

 Example: approximate gradient at z5

• Other approximations

Sobel

Example

f
y



f
x



Sharpening Filters: Laplacian

The Laplacian (2nd derivative) is defined as:

(dot product)

Approximate
derivatives:

Sharpening Filters: Laplacian (cont’d)

Laplacian Mask

detect zero-crossings

Sharpening Filters: Laplacian (cont’d)

Laplacian Sobel

 Cross-correlation in which the filter is flipped
horizontally and vertically is called convolution

Neighborhood Processing (filtering)

2D filtering

fhg *

 
 


k

ku

k

kv
vjuifvuh],[],[

 
 


k

ku

k

kv
vjuifvuhjig],[],[],[

 If the kernel is symmetric

convolution = cross-correlation

Neighborhood Processing (filtering)

Convolution vs. Cross-Correlation

),(),(vuhvuh 

Neighborhood Processing
2D filtering

Noise

 Types of noise:
 Salt and pepper noise
 Impulse noise
 Gaussian noise

 Due to
 transmission errors
 dead CCD pixels
 specks on lens
 can be specific to a sensor

Neighborhood Processing

Practical Noise Reduction
 How can we

remove noise?

 Replace each pixel with
the average of a
kxk window around it

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 100 130 110 120 110 0 0
0 0 0 110 90 100 90 100 0 0
0 0 0 130 100 90 130 110 0 0
0 0 0 120 100 130 110 120 0 0
0 0 0 90 110 80 120 100 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

104

Neighborhood Processing (filtering)

Mean filtering

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

],[yxf],[yxg

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Neighborhood Processing (filtering)

Mean filtering

0 10 20 30 30 30 20 10
0 20 40 60 60 60 40 20
0 30 60 90 90 90 60 30
0 30 50 80 80 90 60 30
0 30 50 80 80 90 60 30
0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10
10 10 10 0 0 0 0 0

],[yxf],[yxg

Neighborhood Processing (filtering)

Effect of mean filters

3x3 5x5 7x7

Sa
lt

&
 P

ep
pe

r n
oi

se
G

au
ss

ian
 n

oi
se

Side effect - blur

Neighborhood Processing (filtering)

Mean kernel
 What’s the kernel for a 3x3 mean filter?

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

],[yxf

],[vuh

Neighborhood Processing (filtering)

Mean kernel
 What’s the kernel for a 3x3 mean filter?

E Equal weight to all pixels
within the neighborhood

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 1 1
1 1 1
1 1 1

],[yxf

],[vuh

1/9

Neighborhood Processing (filtering)

Gaussian Filtering
 A Gaussian kernel gives less weight to pixels

further from the center
of the window0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

is a discrete approximation
of a Gaussian function:

1 2 1
2 4 2
1 2 1

],[yxf

],[vuh


16
1

Neighborhood Processing (filtering)

Mean vs. Gaussian filtering
Input image

Gaussian filteringMean Filtering

Gaussian filter, 20x20, σ = 5Mean filter, 20x20

Neighborhood Processing (filtering)

Mean vs. Gaussian filtering

Neighborhood Processing (filtering)

Gaussian Filtering

 Low-pass filter
 Smooth color variation (low

frequency) is preserved
 Sharp edges (high frequency) are

removed

Neighborhood Processing (filtering)

Median filters

 A Median Filter operates over a window by selecting the
median intensity in the window.

Image credit: Wikipedia – page on
Median Filter

Neighborhood Processing (filtering)

Median filters

 Is a median filter a kind of convolution?
No, median filter is an example of non-linear filtering

))(())(())()((2121 xfMedianxfMedianxfxfMedian 

211)
0
1
0

1
2
1

0
1
0

()
1
0
1

0
1
0

1
0
1

(
































MedianMedian



















































)

0
1
0

1
2
1

0
1
0

1
0
1

0
1
0

1
0
1

()
1
1
1

1
3
1

1
1
1

(1 MedianMedian

Salt&Pepper
Noise

Gaussian
noise

Neighborhood Processing (filtering)

Median filters

 What advantage does a median filter have over a mean filter?
Better at removing Salt & Pepper noise

 Disadvantage:
Slow

Neighborhood Processing (filtering)

Derivatives and Convolution
 Image Derivatives and Gradients
 Used for Edge/Corner Detection
 Computed with Finite Differences Filters

 Laplacian of Gaussians (LoG) Filter
 Used for Edge/Blob Detection and

Image Enhancement
 Approximated using Difference of Gaussians

Reading: Forsyth & Ponce, 8.1-8.2

First Derivative
 Recall Sharp changes in gray level of the input image

correspond to “peaks or valleys” of the first-derivative of the
input signal.

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Reading: Forsyth & Ponce, 8.1-8.2

First Derivative and convolution

 How can we approximate it
for a discrete function?

 Is this operation shift-invariant?

 Is it linear?







 






h
yxfyhxff

hx
),(),(lim

0

? ? ?
? ? ?
? ? ?

],[vux

Reading: Forsyth & Ponce, 8.1-8.2

First Derivative and convolution
 Finite Difference

xx-h

x x+h

x x+h/
2

x-h/2

)(')()(
0

][
xf

h
xfhxf

h
h

h

f



 



)()(bxfaxf 

Slide credit: Wikipedia

Reading: Forsyth & Ponce, 8.1-8.2

First Derivative and convolution
 Finite Difference –The order of an error

can be derived using Taylor Theorem

Slide credit: Wikipedia

Reading: Forsyth & Ponce, 8.1-8.2

First Derivative and convolution
 Pixel Size
 Using Finite Central Difference

 We need a kernel such thatx
yxxfyxxffx 






2
),(),(

ff
x x 



0 0 0
1 0 -1
0 0 0

],[vux


x2
1

hx

x

Neighborhood Processing (filtering)

Finite differences – responds to edges

Dark = negative
White = positive
Gray = 0

fx

Neighborhood Processing (filtering)

Finite differences - responding to noise

Increasing noise ->
(this is zero mean additive gaussian noise)

fx fx fx

Neighborhood Processing (filtering)

Finite differences and noise
 Finite difference filters respond strongly to noise
 Noisy pixels look very different from their neighbours
 The larger the noise  the stronger is the response

 How can we eliminate the response to noise?
 Most pixels in images look similar to their neighbours (even at an edge)
 Smooth the image (mean/gaussian filtering)

Neighborhood Processing (filtering)

Smoothing and Differentiation
 Smoothing before differentiation = two convolutions

 Convolution is associative

)(Hx

fHfH xx )()(

)(Hy

)(fHx 

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels

fHx )(

Neighborhood Processing (filtering)

Smoothing and Differentiation

 Yet another approximation frequently used

Sobel kernels

1 0 -1
2 0 -2
1 0 -1

],[vux


x8
1

fx


1 2 1
0 0 0
-1 -2 -1

],[vuy


y8
1

fy


Neighborhood Processing (filtering)

Neighborhood Processing (filtering)

Image Gradients
 Recall for a function of two variables
 The gradient at a point (x,y)

 Gradient Magnitude

 Gradient Orientation
 direction of the “steepest ascend”
 orthogonal to object boundaries in the image

x
f



y
f















f
f

y

x



















y
f
x
f

f

),(yxf
x

y

small image
gradients in low

textured areas

22

22

)()(

)()(||||

ff

f

yx

y
f

x
f



 





Neighborhood Processing (filtering)

Image Gradient for Edge Detection

 Typical application where image gradients are used is image edge
detection
 find points with large image gradients

Canny edge detector suppresses
non-extrema Gradient points

Reading: Forsyth & Ponce, 8.1-8.2

Second derivatives and convolution
 Peaks or valleys of the first-derivative of the input signal,

correspond to “zero-crossings” of the second-derivative of the
input signal.

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Neighborhood Processing (filtering)

Second derivatives and convolution

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Neighborhood Processing (filtering)

Second derivatives and convolution
 Better localized edges
 But more sensitive to noise

Neighborhood Processing (filtering)

Second derivatives and convolution

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Neighborhood Processing (filtering)

Second Image Derivatives
 Laplace operator

fff 2

ff
y
f

x
ff

y

x
yx 



























][2

2

2

2

0 0 0
-1 2 -1
0 0 0

0 -1 0
0 2 0
0 -1 0


0 -1 0
-1 4 -1
0 -1 0



“divergence
of gradient”rotationally invariant

second derivative for 2D functions

Finite Difference
Second Order
Derivative in x

Finite Difference
Second Order
Derivative in y

Neighborhood Processing (filtering)

Second Image Derivatives
 Laplacian Zero Crossing

 Used for edge detection
(alternative to computing Gradient extrema)

http://homepages.inf.ed.ac.uk/rbf/HIPR2/zeros.htm

magnitude of
image gradient

image
intensity

Laplacian
(2nd derivative)
of the image

2

2

2

2

y
f

x
ff










f

|||| f

f

Neighborhood Processing (filtering)

Laplacian Filtering

-Zero on uniform regions
-Positive on one side of an edge
-Negative on the other side
-Zero at some point in between
on the edge itself
 band-pass filter (Suppresses both high and low frequencies)

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Neighborhood Processing (filtering)

Laplacian of a Gaussian (LoG)
 Smooth before differentiation

(remember associative property of convolution) LoGG

2

22

2
2

22

4 2
11),(



yx

eyxyxLoG











 


http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Neighborhood Processing (filtering)

Laplacian of a Gaussian (LoG)

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Suppresses both high and low frequencies

Neighborhood Processing (filtering)

Laplacian of a Gaussian (LoG)

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Neighborhood Processing (filtering)

Laplacian of a Gaussian (LoG)

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Neighborhood Processing (filtering)

Laplacian of a Gaussian (LoG)
 Can be approximated by a difference of two

Gaussians (DoG)

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Neighborhood Processing (filtering)

DoG vs. LoG
 Separable (product decomposition)  more efficient
 Can explain band-pass filter since Gaussian is a low-pass

filter.

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Neighborhood Processing (filtering)

LoG for Blob Detection
 Cross correlation with a filter can be viewed as

comparing a little “picture” of what you want to find
against all local regions in the image.

 Scale of blob (size ; radius in pixels)
is determined by the sigma parameter
of the LoG filter.

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Neighborhood Processing (filtering)

LoG for Blob Detection

http://www.cse.psu.edu/~rcollins/CSE486/lecture11_6pp.pdf

Histogram Equalization

