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Multiband Image Operations

 Operations performed by combining gray levels 
recorded in different bands for the same pixel

 Applications
 Data reduction through decorrelation
 Highlighting specific features with significant difference 

in response in different bands
 The transformed data may be viewed like enhanced 

versions compared to originals
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Principal Component Transform

 Highlights the redundancy in the data sets due to 
similar response in some of the wavelengths

 Original bands variables represented along different 
coordinate axes, redundancy implies variables are 
correlated, not independent

 Gray level in a band at a pixel can be predicted 
from the knowledge of the pixel gray level in other 
bands
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Example of Redundancy in Data

• Example: Highly 
correlated data

• Values along band b1 
leads to knowledge 
along band b2 of the 
data element

• Linear variation 
(nearly) between b1 
and b2

• Often true in case of 
visible bands

b1

b2
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• Points projected 
onto the line a 
small error in the 
position of the 
point.

• Points represented 
by only one 
coordinate b1’ 
half data reduced

• For highly 
correlated data, 
this error will be 
minimal

b1’
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Decorrelating Multispectral Remotely 
Sensed Data

 How do we identify the optimum axes along 
which the remotely sensed data should be 
projected so that the transformed data would 
be uncorrelated?

 What should be the way to rank the new axes
so that we can discard the least important 
dimensions of the transformed data?

 Invertibility of the transformation?
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Statistics
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Covariance Matrix

 C = {Ckl | k = 1, …, K, l = 1, …, K}
 K is the number of bands in which the 

multispectral dataset was generated
 C is a symmetric matrix
 Ckl = Clk

 Diagonal elements of C are the intra-band 
variances

 Off-diagonal elements are the inter-band 
covariances
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Relation between correlation and 
covariance

 Correlation Rkl = 

 It can be shown that Rkl = Ckl + mkml

 For data with zero-mean, correlation and co-variance will be 
equal
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Principal Component Transformation

Problem to solve:
 Find a transformation to be applied to the 

input multispectral image such that the 
covariance matrix of the result is reduced to a 
diagonal matrix

 Further, we should find an axis v such that the 
variance of the projected coordinates (zk = vk

t

x) is maximum.

10

GNR401   Dr. A. Bhattacharya



Solving

Given the transformed vector
zk = vk

t x

The variance sz
2 =

This simplifies to sz
2 = vtCv

C, the covariance matrix is a positive, semi-definite, real 
symmetric matrix.
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Finding vector v

 To maximize the projected variance sz
2, find a v such 

that vtCv is maximum, subject to the constraint vtv = 1. 
Combining the maximization function with the 
constraint, we can write

 vtCv – l(vtv – 1) = maximum
 Differentiating w.r.t. v,

( 1) 0t tC
v

     
v v v v
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Eigenvector/Eigenvalue

The derivative results in
Cv = lv (Verify!)

Therefore, v is an eigenvector of C
vtCv = vt(lv) = lvtv = l

This implies that v is the eigenvector of C with the 
largest eigenvalue

Therefore all the eigenvectors with decreasing 
eigenvalues lead to axes with decreasing variance 
along them.
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Example

34.89    55.62   52.87   22.71 
55.62  105.95  99.58    43.33
52.87    99.58 104.02   45.80
22.71   43.33    45.80   21.35

Covariance Matrix

0.34   −0.61     0.71  −0.06
0.64   −0.40   −0.65  −0.06
0.63     0.57     0.22    0.48
0.28     0.38     0.11  −0.88

Eigenvalues 253.44     7.91      3.96     0.89

Eigenvectors
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Transformation

 New component value = dot product of eigenvector and 
pixel vector

 (i,j)  pixel position

 n eigenvectors for n principal components

 1st principal component  dot product of pixel vector with 
eigenvector corresponding to largest eigenvalue
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Principal Components

For n input bands, n principal components are 
computed

The utility of the principal components gradually 
decreases from 1st towards the last

e.g., For Landsat TM, last three PCs are generally of 
very little value
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From J.R. Jensen’s lecture notes at Univ. South Carolina; used with permission
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PCT applications

 For IRS / IKONOS images, out of four bands, 2-3 principal 
components capture most of the useful information. The last 1-2 
bands are redundant.

 Advantages
 Smaller data volume to handle
 Principal components appear to be enhanced versions of the 

originals, having contributions from all the four input bands

 Application scientists use composites of PC 1-2-3 for 
interpretation of various features such as geology
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Band 1 (Blue)
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Band 2 (Green)
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Band 3 (Red)
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Band 4 (NIR)
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Band 5 (SWIR)
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Band 7 (SWIR)
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PC1
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PC2
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PC3
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PC6
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 Assumption behind PCA is that the data points 
x are multivariate Gaussian

 Often this assumption does not hold

 However, it may still be possible that a 
transformation (x) is still Gaussian, then we 
can perform PCA in the space of (x)
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