

# PRINCIPAL COMPONENT TRANSFORM

Lecture 6

# Multiband Image Operations

2

- Operations performed by combining gray levels recorded in different bands for the same pixel
- Applications
  - ▣ Data reduction through decorrelation
  - ▣ Highlighting specific features with significant difference in response in different bands
  - ▣ The transformed data may be viewed like enhanced versions compared to originals

# Principal Component Transform

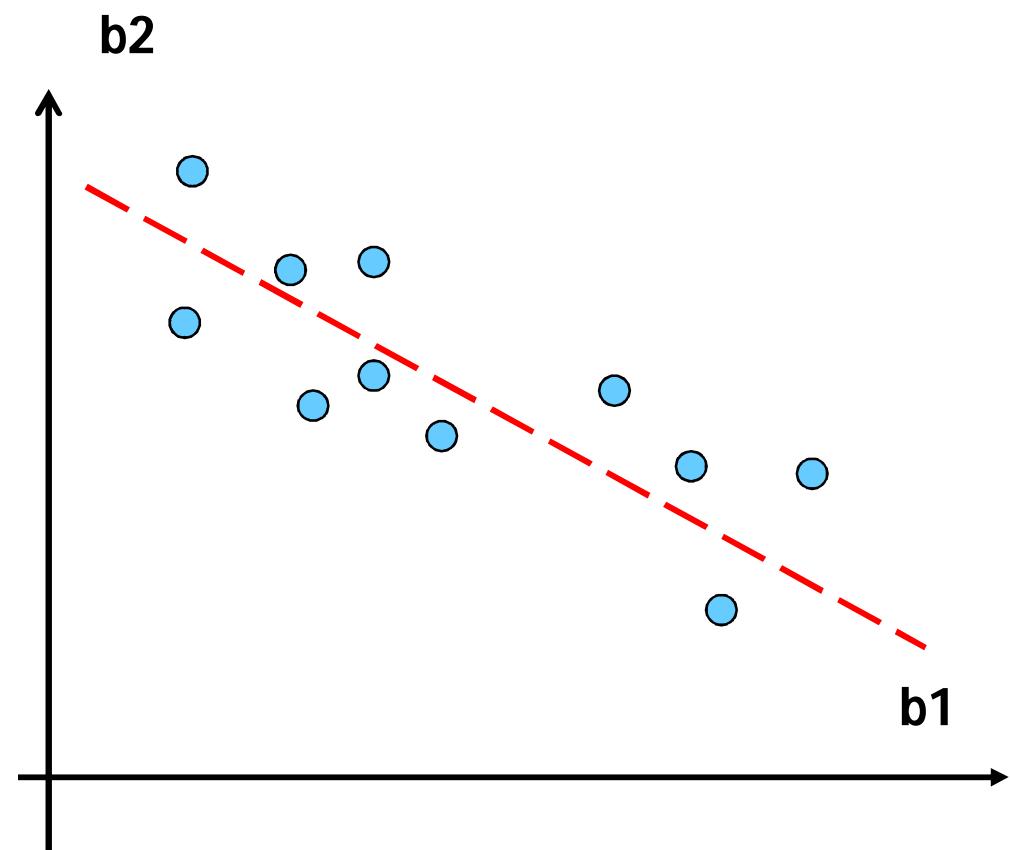
3

- Highlights the **redundancy** in the data sets due to similar response in some of the wavelengths
- Original bands variables represented along different coordinate axes, redundancy implies variables are **correlated**, not independent
- Gray level in a band at a pixel can be predicted from the knowledge of the pixel gray level in other bands

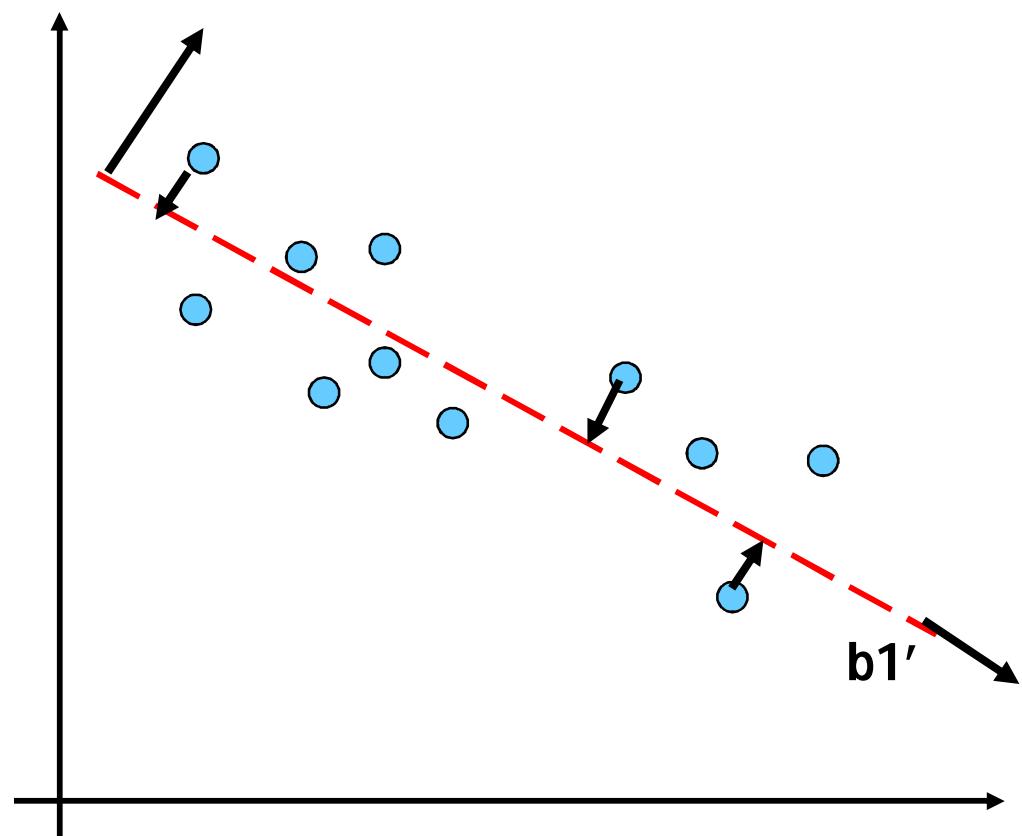
# Example of Redundancy in Data

4

- **Example:** Highly correlated data
- Values along band  $b_1$  leads to knowledge along band  $b_2$  of the data element
- Linear variation (nearly) between  $b_1$  and  $b_2$
- Often true in case of visible bands



- Points projected onto the line  $\rightarrow$  a small error in the position of the point.
- Points represented by only one coordinate  $b_1'$   $\rightarrow$  half data reduced
- For highly correlated data, this error will be minimal



# Decorrelating Multispectral Remotely Sensed Data

6

- How do we identify the **optimum axes** along which the remotely sensed data should be projected so that the transformed data would be uncorrelated?
- What should be the way to **rank the new axes** so that we can discard the least important dimensions of the transformed data?
- **Invertibility** of the transformation?

# Statistics

7

Mean

$$\frac{\sum_{i=1}^M \sum_{j=1}^N g_{ij}^k}{M \cdot N}$$

Variance

$$\left[ \frac{\sum_{i=1}^M \sum_{j=1}^N (g_{ij}^k - \mu_k)^2}{M \cdot N} \right]$$

Covariance

$$\frac{\sum_{i=1}^M \sum_{j=1}^N (g_{ij}^k - \mu_k)(g_{ij}^l - \mu_l)}{M \cdot N}$$

# Covariance Matrix

8

- $C = \{C_{kl} \mid k = 1, \dots, K, l = 1, \dots, K\}$
- $K$  is the number of bands in which the multispectral dataset was generated
- $C$  is a symmetric matrix
- $C_{kl} = C_{lk}$
- Diagonal elements of  $C$  are the intra-band variances
- Off-diagonal elements are the inter-band covariances

# Relation between correlation and covariance

9

- Correlation  $R_{kl} =$

$$\frac{\sum_{i=1}^M \sum_{j=1}^N g_{ij}^k g_{ij}^l}{M \cdot N}$$

- It can be shown that  $R_{kl} = C_{kl} + \mu_k \mu_l$
- For data with zero-mean, correlation and co-variance will be equal

# Principal Component Transformation

10

## Problem to solve:

- Find a transformation to be applied to the input multispectral image such that the covariance matrix of the result is reduced to a diagonal matrix
- Further, we should find an axis  $\underline{v}$  such that the variance of the projected coordinates ( $z_k = \underline{v}_k^t \underline{x}$ ) is maximum.

# Solving

11

Given the transformed vector

$$z_k = \underline{v}_k^t \underline{x}$$

The variance  $\sigma_z^2 =$

$$\frac{\sum_{i=1}^M \sum_{j=1}^N v^t (x_{ij} - \mu_k) (x_{ij} - \mu_l)^t v}{M \cdot N}$$

This simplifies to  $\sigma_z^2 = \underline{v}^t C \underline{v}$

$C$ , the covariance matrix is a positive, semi-definite, real symmetric matrix.

# Finding vector $\underline{v}$

12

- To maximize the projected variance  $\sigma_z^2$ , find a  $\underline{v}$  such that  $\underline{v}^t C \underline{v}$  is maximum, subject to the constraint  $\underline{v}^t \underline{v} = 1$ . Combining the maximization function with the constraint, we can write
- $\underline{v}^t C \underline{v} - \lambda(\underline{v}^t \underline{v} - 1) = \text{maximum}$
- Differentiating w.r.t.  $\underline{v}$ ,

$$\frac{\partial}{\partial \underline{v}} \left[ \underline{v}^t C \underline{v} - \lambda(\underline{v}^t \underline{v} - 1) \right] = 0$$

# Eigenvector/Eigenvalue

13

The derivative results in

$$C\underline{v} = \lambda \underline{v} \quad (\text{Verify!})$$

Therefore,  $\underline{v}$  is an *eigenvector of C*

$$\underline{v}^t C \underline{v} = \underline{v}^t (\lambda \underline{v}) = \lambda \underline{v}^t \underline{v} = \lambda$$

This implies that  $\underline{v}$  is the eigenvector of C with the largest eigenvalue

**Therefore all the eigenvectors with decreasing eigenvalues lead to axes with decreasing variance along them.**

# Example

14

|                          |       |        |        |       |
|--------------------------|-------|--------|--------|-------|
| <b>Covariance Matrix</b> | 34.89 | 55.62  | 52.87  | 22.71 |
|                          | 55.62 | 105.95 | 99.58  | 43.33 |
|                          | 52.87 | 99.58  | 104.02 | 45.80 |
|                          | 22.71 | 43.33  | 45.80  | 21.35 |

|                    |        |      |      |      |
|--------------------|--------|------|------|------|
| <b>Eigenvalues</b> | 253.44 | 7.91 | 3.96 | 0.89 |
|--------------------|--------|------|------|------|

**Eigenvectors**

|   |      |       |       |       |
|---|------|-------|-------|-------|
| ↓ | 0.34 | -0.61 | 0.71  | -0.06 |
|   | 0.64 | -0.40 | -0.65 | -0.06 |
|   | 0.63 | 0.57  | 0.22  | 0.48  |
|   | 0.28 | 0.38  | 0.11  | -0.88 |

# Transformation

15

- New component value = dot product of eigenvector and pixel vector
- $(i,j) \rightarrow$  pixel position
- n eigenvectors for n principal components
- 1<sup>st</sup> principal component  $\rightarrow$  dot product of pixel vector with eigenvector corresponding to largest eigenvalue

# Principal Components

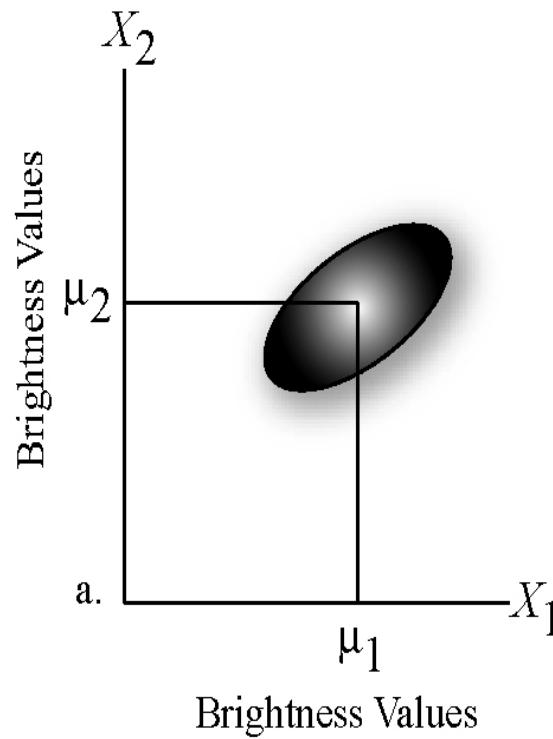
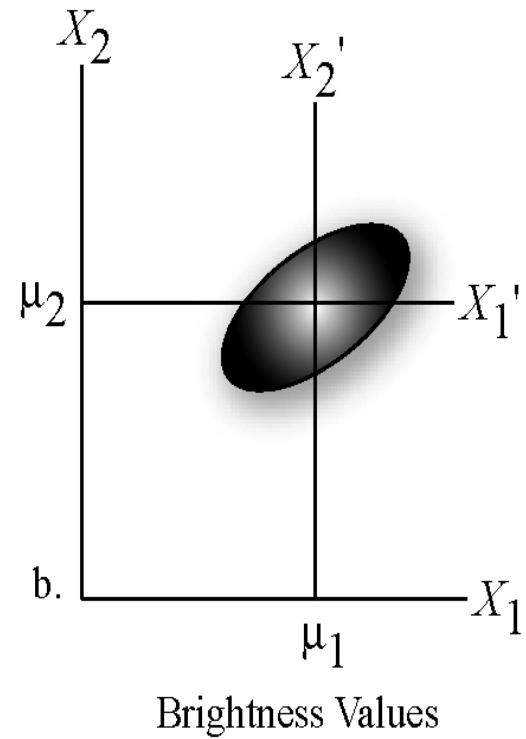
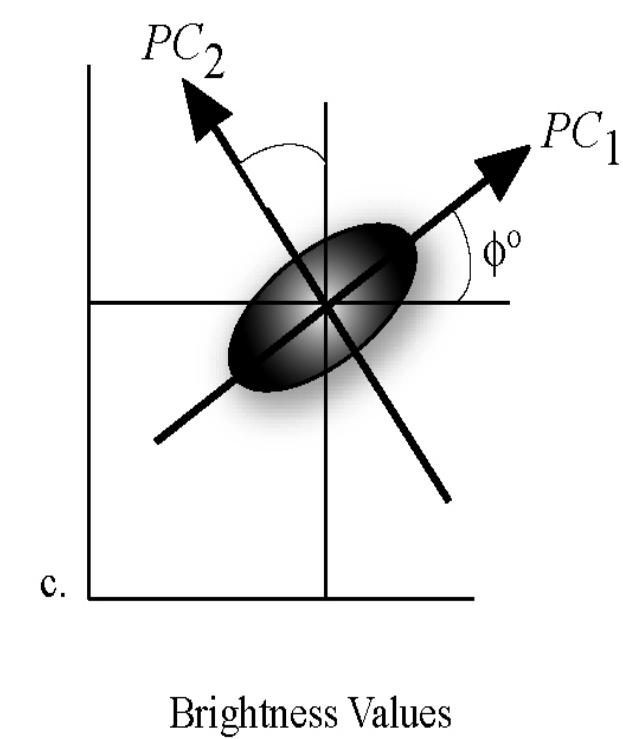
16

**For  $n$  input bands,  $n$  principal components are computed**

**The utility of the principal components gradually decreases from 1<sup>st</sup> towards the last**

**e.g., For Landsat TM, last three PCs are generally of very little value**

## Principal Components Analysis



From J.R. Jensen's lecture notes at Univ. South Carolina; used with permission

GNR401 Dr. A. Bhattacharya

# PCT applications

18

- For IRS / IKONOS images, out of four bands, 2-3 principal components capture most of the useful information. The last 1-2 bands are redundant.
- Advantages
  - ▣ Smaller data volume to handle
  - ▣ Principal components appear to be enhanced versions of the originals, having contributions from all the four input bands
- Application scientists use composites of PC 1-2-3 for interpretation of various features such as geology



**Band 1 (Blue)**



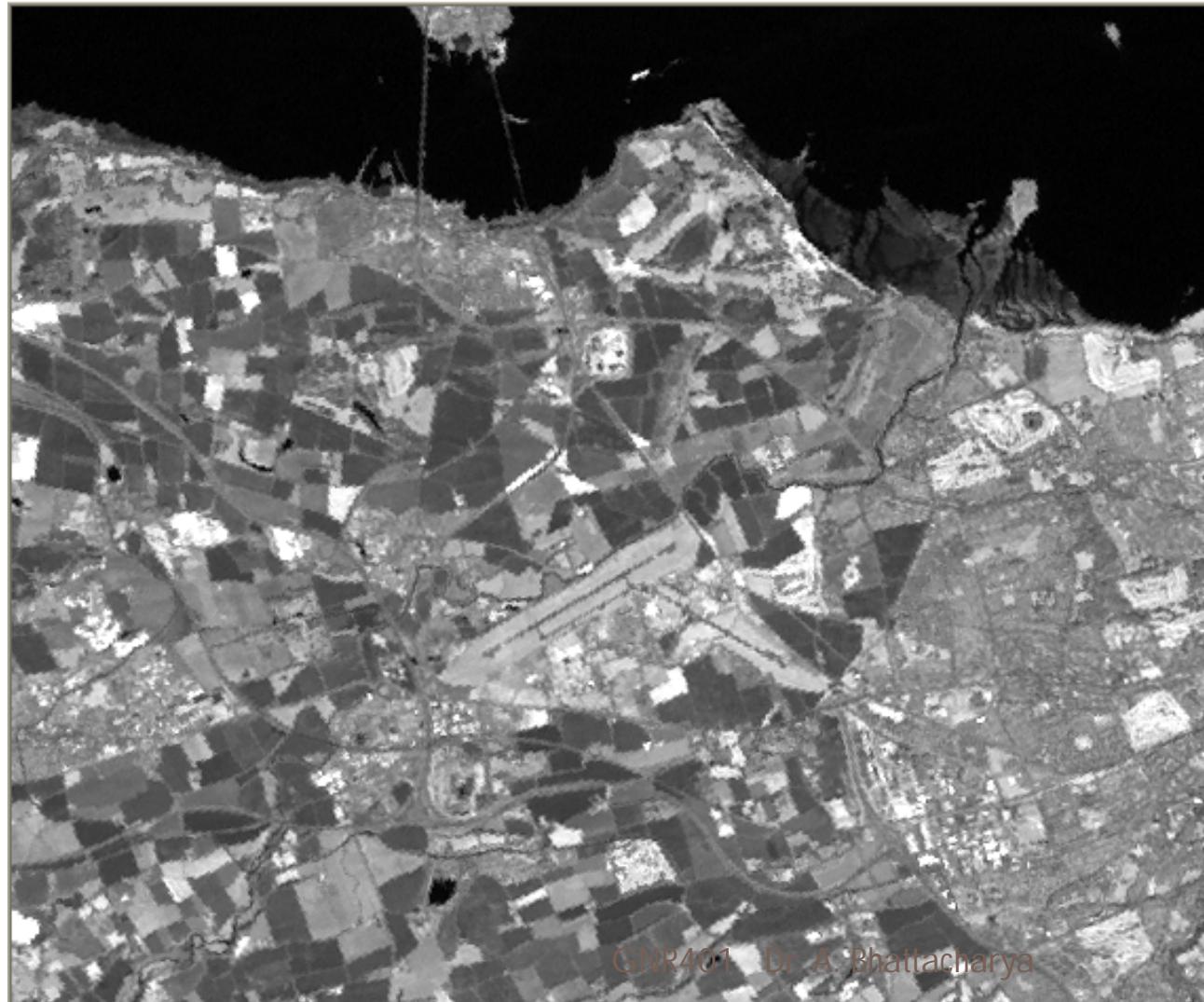
**Band 2 (Green)**



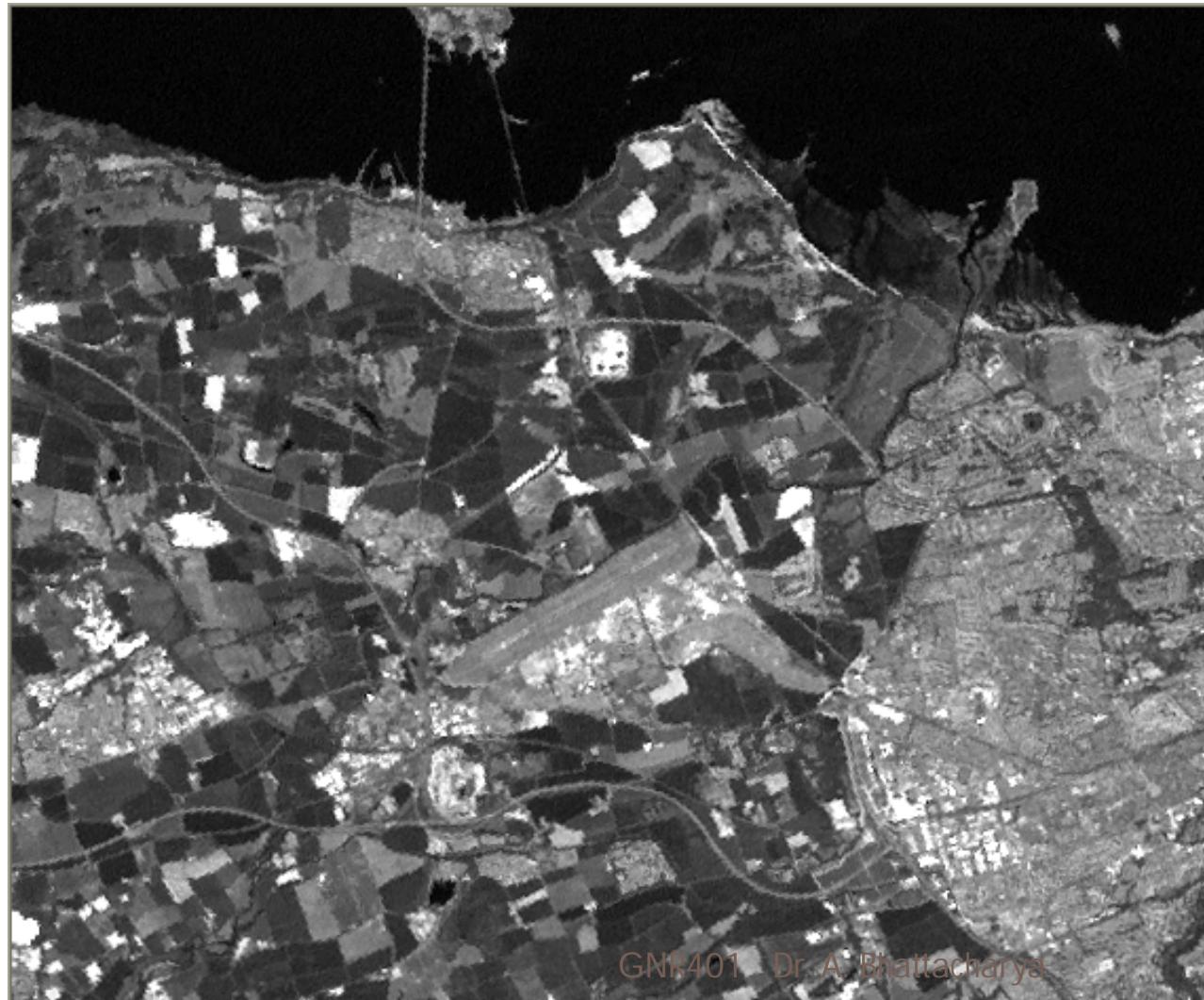
**Band 3 (Red)**



**Band 4 (NIR)**



**Band 5 (SWIR)**



**Band 7 (SWIR)**



PC1

GNR401 Dr. A. Bhattacharya



PC2

PC3



GNR401 Dr. A. Bhattacharya



PC6

GNR401 Dr A. Bhattacharya

- Assumption behind PCA is that the data points  $\mathbf{x}$  are multivariate Gaussian
- Often this assumption does not hold
- However, it may still be possible that a transformation  $\phi(\mathbf{x})$  is still Gaussian, then we can perform PCA in the space of  $\phi(\mathbf{x})$