Microwave Remote Sensing of Soil Moisture

Y.S. Rao CSRE, IIT, Bombay

Soil Moisture (SM)

- Agriculture
- Hydrology
- Meteorology

Measurement Techniques

Survey of methods for soil moisture determination, Water Resources Research, Vol. 16, No.6, Page961-879, 1980, Schmugge et al. (1980)

In Situ Methods

- Gravimetric
- Nuclear Techniques
- Electromagnetic Techniques
- Tensiometric Techniques
- Hygrometric Techniques

Remote Sensing Methods

- Visible & near IR Reflected Solar
- Thermal IR Surface Temperature
- Passive Microwave Microwave Emission/Brightness Temperature
- Active Microwave Backscattering coefficient/dielectric properties

Gravimetric Techniques

• Oven drying a soil sample at 105°C for about 12 hours.

$$\% M_{wt} = \frac{W_{wet} - W_{dry}}{W_{dry}} * 100$$

Volumetric Soil Moisture (gm/cm³) %M_{wt} *Y_d

Y_d Oven Dry Bulk Density

Nuclear Techniques

• Fast neutrons emitted by an Americium 241: Beryllium radioactive source are themalised (slowed) by hydrozen in the test sample

Advantages : SM can be measured at the any time, average SM can be measured with depth, system can be interfaced for automatic recording, temporal SM changes can be measured, readings are directly related SM

Disadvantages : Surface soil moisture is not accurate, care must be taken to minimize health risks.

Electromagnetic Techniques

• The technique is based on the electrical properties of the soil that varies with soil moisture. Resistivity or Capacitance between electrodes in a soil is measured for Soil moisture.

Complex Dielectric Constant

$$\boldsymbol{e} = \boldsymbol{e}_{r} + j\boldsymbol{e}_{i}$$

Tensiometric Techniques

Measures the capillary tension or the energy with which water is held (suction) by the soil.

Tensiometers consist of porous ceramic cup connected by a continuous liquid column to a vacuum gauge or transducer.

Advantages : easy to design, cost little, at any conditions in real time, placed in soil easily,

Disadvantages : Only measures soil water suction, but only indirect measurement of soil moisture content; during installation, it may break.

Soil Water Models

- $SM_t = SM_{t-1} + P R L E T + C Q$
- SM_t Soil moisture at time t
- SM_{t-1} Soil moisture at previous time
- **P Precipitation**
- **R Surface Runoff**
- L net lateral subsurface outflow
- **E**-Evaporation or condensation
- T Transpiration
- **C Capillary rise from lower levels**
- **Q** percolation

- USDAHL Model
- NWSRFS model

Remote Sensing Methods

- Visible Technique: Reflected solar energy is measured. (0.4 – 1.7 mm)
- Relationship between Reflectance and SM Depends on reflectance of dry soil, roughness, colour, illumination, organic matter, soil texture.

Thermal Infrared Techniques

- Diurnal range of Surface Temperature(T_{max} - T_{min}) or Measurement of crop canopy air temperature differential.
- (T_{max}-T_{min}) depends on internal and external factors
- Internal factors : Thermal conductivity(K) and heat capacity (C) where $P = (KC)^{1/2}$ is known as Thermal Inertia. K and C increases with Soil Moisture.
- External Factors : solar radiation, air temperature, RH, cloudiness, and wind.

Diurnal Temperature Variation versus Soil Moisture

Fig. 7. Summary of results for the diurnal temperature variation versus soil moisture [Idso et al., 1975a].

MODIS Data from Terra and Aqua Satellites

Swath : 2330 Km and covers the same area 1 or 2 days

Spectral Bands : 36 ; Wavelength : 0.405 – 14.385

Resolution : 250m (bands 1-2, 500m (bands 3-7), 1000m(8-36).

Surface/Cloud

Temperature 31 10.780 - 11.280

32 11.770 - 12.270

LANDSAT – 7 band-6 (10.4 – 12.5 microns, Resolution 60 m)

Microwave Remote Sensing

0.3 - 300 GHz (wavelength 1 m - 1 mm)

Passive (Radiation or T_B) **Radiometers**

 $T_B = e T$

Where e is emissivity and T is physical Temperature

Active

(Backscattering s₀ dB) Radar

 σ_0 depends on dielectric properties of soil, geometric properties and system parameters.

Advantages

- All weather Capability
- Day-night ability
- Penetration through a medium

Penetration

RADAR RESPONSE TO VEGETATION AND SUBSURFACE HORIZONS

Passive Microwave Remote Sensing

Emitted Radiation in Passive MRS $T_{Bp} = T_u + e^{-t_a} T_{bp} + e^{-t_a} R_p [T_d + T_{sky} e^{-t_a}]$...

Brightness Temperature $T_B = eT$

e – Emissivity, T – Physical Temperature

Fresnel Reflection Equation $\mathbf{s}_{=eT}$

$$e_{h} = 1 - R_{h} = 1 - \left| \frac{\cos \mathbf{q} - \sqrt{\mathbf{e} - \sin^{2} \mathbf{q}}}{\cos \mathbf{q} + \sqrt{\mathbf{e} - \sin^{2} \mathbf{q}}} \right|^{2}$$
$$e_{v} = 1 - R_{v} = 1 - \left| \frac{\mathbf{e} \cos \mathbf{q} - \sqrt{\mathbf{e} - \sin^{2} \mathbf{q}}}{\mathbf{e} \cos \mathbf{q} + \sqrt{\mathbf{e} - \sin^{2} \mathbf{q}}} \right|^{2}$$

Radiometer Systems and their Parameters

Parameters	SSMR in NIMBUS-7	SSM/I	IRS-P4, MSMR	EOS Aqua AMSR-E	ADEOS-II AMSR	
Launch date	1978-87	1987/92/95	May 26, 1999	May 4, 2002	Jan. 16, 2004	
Frequency (GHz.)	6.6, 10.7, 18.0, 21 and 37 GHz	19.3, 22.2 (V), 38.0 and 85.5 GHz	6.6, 10.65, 18, 21	6.6, 10.65, 18.7, 23.8, 36.5, 89	6.6, 10.7, 18.7, 23.8, 36.5, 89, (50.3 V and 52.8 V	
Polarization	H & V	H &V (except 22.2 GHz)	H&V	H&V	H&V (except last 2)	
IFOV (km x km)	148x95, 91x59, 55x41, 46x30, 27x18	69x43, 60x40, 37x28, 15x13 km	150x144, 75x72, 50x36, 50x36 km	76x44, 49x28, 28x16, 31x18, 14x8, 6x4 km	70x40,46x27,25x14,2 8x17,14x8,6x3,10x6 km	
Swath width (km)	822 km	1400 km	1360	1445	1600	
Revisit coverage(days)		1 day	2	2	2	
Incidence angle (deg.)	50.3 (at the surface)	53.3 (at the surface)	43.13	54 (at the surface)	54 (at the surface)	
Sensitivity	0.4, 0.5, 0.7, 0.7, 1.1	0.8, 0.8, 0.6, 1.1	0.6, 0.75, 1.05, 1.1	0.3, 0.6, 0.6, 0.6, 0.6, 1.0	0.3,0.6,0.6,0.6,0.6,1.0, 1.3,0.9	

Polarization

IFOV, Swath, Incidence Angle

SSM/I Satellite

Defense Meteorological Satellite Program (DMSP) Block 5D-2 satellite with the Special Sensor Microwave (SSM/I) located at the upper left.

Fig. 4. SSM/I scan geometry.

Fig. 3. Prototype of the SSM/I in deployed position.

Average Snow Cover (71-95) & Sea Ice Extent (78-95)

EOS-PM (AQUA-1) Satellite http://www.aqua.nasa.gov

AMSR-E, Launched May 4, 2002

Data Available from Feb. 2003 onwards

Frequencies (GHz)Resolution (km)6.6, 10.65, 18.7,76x44, 49x28, 28x16,23.8, 36.5, 8931x18, 14x8, 6x4

Active Sensor Systems and System Parameters

Parameters	Sea- sat	ERS-1,2	JERS -1	Radars at	SIR-C	ENVISAT	Radarsat -2
Launch	June 197 8	July 91 &Apr 95	Feb. 92	Nov. 95	Apr & Oct. 1994	March 1, 2002	2004
Frequency	1.27 5	5.3	1.275	5.3	1.2,5.3,9.8	5.3	5.3
Waveleng.,c m	23.5	5.6	23.5	5.6	23.5,5.6,3.1	5.6	5.6
Resolution(m)	25	30	18	10 - 100	25	30	10-100
Swath (km)	100	100	75	35 - 500	15 - 90	150–1km	35 - 500
Look anlge	23	23	35	20 - 50	20 - 55	20 - 50	20-50
Polarization	HH	VV	HH	HH	HH,VV,H V	HH,VV	HH,VV
Looks	4	4	3	1- 4-14	4		

Elements of a Typical Remote Sensing Radar

ERS-1 Satellite with C-band VV SAR system

System Parameters

Launch: July 91 & Apr '95 (ERS2) Frequency : 5.3 GHz (1=5.6 cm) Resolution : 30 m Swath : 100 km Look Angle : 23⁰ Polarization: VV Looks : 4

RADARSAT-I

System Parameters Frequency : 5.3 GHz (1=5.6 cm) Resolution:10 -100 m Swath : 35 -500 km Look Angle: 20 -50⁰ Polarization : HH Looks : 4 to 14

Future SAR Systems ENVISAT (Launch Date : March 1, 2002)

ENVISAT ASAR Operating Models

First Image from ENVISAT

Antarctica Larsen B ice shelf Wide Swath 400 km 150 m resolution March 18, 2002

Incidence Angle

Local incidence angle

Slant Range to Ground Range

Geometric Effects

Foreshortening

Shadow

Speckle Reflection,

Diffuse scattering

Corner Reflector

Volume Scattering

Surface roughness/λ

(d)

POINT TARGETS

DISCRETE TARGET WITH SIMPLE CONFIGURATION STRONG RADAR RETURN DISPROPORTIONATE TO ITS SIZE

EXAMPLES: BUILDINGS, TRANSMISSION TOWERS, BRIDGES:

A: DIHEDRAL CORNER REFLECTOR

B: TRIHEDRAL CORNER REFLECTOR

Radarsart 2 ²⁰⁰³ HH,VV, HV, VH

Advanced Land Observing Satellite (ALOS) 2004

PALSAR (Phased array SAR)

PRISM

LightSAR (USA & Germany

- L- and X-band
- **All Polarizations**
- **RISAT (Radar Imaging Satellite)**
- C-band in 3 modes

Radar Altimeter Mission

Determine the variation in the thickness of the Ice sheets to be planned to Launch 2004

Range Resolution 4.6 cm, accuracy 1 or 2 cm

Indian RISAT SAR

Launch year - 2006 Frequency = 5.35 GHz **Resolution HRS 1-2 m** with Swath 10 x 10 km, single/dual polarization FRS-1 mode 3-6 m with swath 30 km, single/dual polarization FRS-2 model 9-12, with swath 30 km, Quad polarization

MRS/CRS mode 25- 50 m, with swath 120/240 km, single/quad